
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. ##, NO. ##, ## 2019 1

A Truthful and Near-optimal Mechanism for
Colocation Emergency Demand Response

Jianhai Chen, Deshi Ye*(�), Zhenguang Liu, Shouling Ji, Qinming He, Member, IEEE and Yang
Xiang Fellow, IEEE

Abstract—Demand response (DR) has been widely adopted as a strategic plan of the electricity market in maintaining power grid
reliability, sustainability, and stability. In a typical emergency DR (EDR) that arises in colocation data centers, participating tenants can
reduce their power consumption when the supply of electricity is a shortage and be rewarded with financial compensation. In this
paper, we study a mechanism design problem of motivating tenants for colocation EDR (MEDR). To solve the MEDR problem, we
present a truthful Fully Polynomial-Time Approximation Scheme (FPTAS) which is theoretically proved deterministic, truthful and
near-optimal, and can be approximated within 1 + ε for any given ε > 0, while the running time is in the polynomial of the number of
tenants n and 1/ε . To speed up the calculation of the payments, we further study the Vickrey-Clarke-Groves (VCG) based mechanism.
Moreover, we build a MEDR auction system (MEDRAS) and implement all mechanism algorithms for a colocation data center.
Comprehensive and detailed experiments have been implemented to validate the efficiency of our proposed mechanisms.

Index Terms—Emergency Demand Response; Mechanism Design; Colocation Datacenter; Auction; FPTAS; Smart Grid

F

1 INTRODUCTION

Demand response (DR) is not only a technique for reg-
ulating energy consumption over time but also one of the
major reliability impacts for smart grids [1]. DR is a vital
means of demand-side management (DSM) which refers to
the way that countries use policy measures to guide power
users to reduce electricity at peak time, use electricity in a
low valley, improve power supply efficiency and optimize
the usage of electricity. A typical DR is the emergency
demand response (EDR) for the case of emergency demand
for using electricity (for example, earthquake or extremely
bad weather). When EDR happens, the demand side man-
agement (DSM) will hold an auction to start an immedi-
ate response or incentive mechanism of the users’ report
electricity and declare the amount of electricity and the
price of electricity. On the consumer side, DR is commonly
utilized as a powerful tool for employing the flexibility of
using electricity in response to supply-demand conditions
[2]. When electricity price rises or the system reliability is
threatened, the electricity supplier will firstly deliver the no-
tice of direct compensation, of inductively reducing power
load or signal of power price rise to the power consumers.
Then consumers will change their intrinsic power using the
mode to meet the demand of electricity supply, reducing or
passing a special period of power load, ensuring the stability
of the power grid and restraining the rise of electricity price.

• J. Chen, D. Ye, S. Ji, Q. He are with the Institute of Cyberspace Research
and College of Computer Science, Zhejiang University, Hangzhou, China,
310027.
E-mail: chenjh919, yedeshi, sji, hqm@zju.edu.cn.

• Z. Liu was with the National University of Singapore, Singapore. Email:
liuzhenguang2008@gmail.com.

• S. Ji is also with Alibaba-Zhejiang University Joint Institute of Frontier
Technologies.

• Y. Xiang is with the Swinburne University of Technology, Victoria 3122
Australia. Email: yxiang@swinburne.edu.au.

• D. Ye is the corresponding author.

It is worth noting that the colocation of data centers
is quite popular now with the rapid development and
application of cloud computing. According to the website 1,
there are 3, 775 colocation data centers from 112 countries. A
colocation is the third-party leased placement that provides
physical homes for many data centers and provides lots
of services such as the fast Internet, stable power supply
and cooling. The running of large-scale cloud application
services requires sufficient resources and power supply to
ensure its reliability especially in the case of an emergency.
Many demand response programs have been used in colo-
cation datacenters for improving the efficiency of power
grids [3], [4], with attempts to adjust the demand for power
instead of adjusting the supply. Though the colocation of
datacenters provided a nice solution for those enterprise
tenants, it consumed huge electricity. As pointed out in [5],
91 billion kilowatt-hours of electricity was consumed in the
U.S. in 2013, and it emitted around 97 million metric tons
of carbon pollution in that year. On the other hand, it is
possible to close or migrate some tasks in a large datacenter
such that some computing servers can be shut-down. This
makes possible for datacenters to be a participant in demand
response. In case of emergency or reaching the capacity of a
grid, colocation datacenter requires implementing the EDR.

To realize the EDR, the incentive auction mechanism has
been usually used to motivate power users to participate
actively in responding to DR activities [6], [7], [8]. In an EDR
setting, given demand for power size and a group of agent
bids with bidding size and cost, the auction mechanism
needs to determine a set of bids that are winners with
a minimized social cost. The overall process of auction
requires the truthfulness of bids and the efficiency of the
winning bids’ decisions. However, there are still few ef-

1. Data collected from http://www.datacentermap.com/ on Jan 7,
2016.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. ##, NO. ##, ## 2019 2

fective mechanisms and systems to support high-efficiency
power management in the current power grid and many
colocation datacenters, leading to high power cost and low
efficiency [9]. For example, to reduce peak demand in a
power grid, the DR is usually implemented manually by
sending signals to large consumers, such as datacenters. To
the best of our knowledge, Zhang et al. [2] were the first
ones to study approximated truthful mechanisms for the
MEDR problem. They provided a 2-approximated mecha-
nism with truthful in expectation. The key significance of
their work is to present a 2-approximated algorithm, and
then convert the approximation algorithm into a mechanism
with truthful in expectation, while keeping the approxi-
mation ratio of 2. The framework of their work is based
on a convex decomposition technique [10], which transfers
an approximation algorithm into a truthful randomized
mechanism.

In this work, we target to study a Mechanism design
problem of EDR that arises in colocation data centers,
denoted by the MEDR problem. Our task is to propose de-
terministic mechanisms and an auction system prototype as
a holistic solution to the MEDR problem. Our work includes
two main challenges. The first challenge is to design a highly
efficient and truthful mechanism. The MEDR optimization
generalizes a min-knapsack problem and a max-knapsack
problem which are both NP-hard. This motivates us to
study approximate methods, and hence we propose a truth-
ful FPTAS (Fully Polynomial-Time Approximation Scheme)
mechanism. Though our proposed FPTAS mechanism runs
in polynomial time, the running time, especially, the run-
ning time for the payment is still large. Thus we consider
another approach to get a tradeoff between truthfulness and
computational efficiency. It is worth noting that we could
apply the VCG (Vickrey-Clarke-Groves) based mechanism,
a deterministic truthful mechanism to the MEDR prob-
lem [11], [12], [13]. But, to be truthful, it requires an optimal
allocation algorithm in the VCG-based mechanism, and
approximation algorithms for MEDR might not be truthful.
Our second mechanism is called a VCG-based mechanism
that could transfer an approximation algorithm into a mech-
anism while not sacrificing the truthfulness too much. We
prove that our proposed FPTAS allocation algorithm with
VCG-based payment is a ε-truthful mechanism for any
given ε > 0, and the running time of this mechanism will
outperform than the FPTAS-mechanism when the number
of tenants is not in a large-scale.

The second challenge is the design and implementation
of high efficient mechanism algorithms and auction system.
We consider a reverse auction scenario to realize the MEDR
mechanism. In order to facilitate building a high efficient
auction platform for EDR in colocation data centers, we
integrate our MEDR mechanism into a routine that can
be independently run for practical auctions. However, to
implement a realistic auction system platform we might
further consider the overall function requirement of the auc-
tion and how to inter-communicate with the existing online
working datacenter systems. On account of the complexity
of datacenter practical EDR auction business logic, in this
work, we focus on the integration of MEDR mechanism
algorithms and the design of a system prototype. Actu-
ally, the mechanism in the auction includes two classes,

namely winner decision, and winner payment algorithms.
The winner decision considers the dynamic programming
with a table that requires a large memory to store the pilot
process data in the auction if the number of bids is very
big. Due to the limit resource capacity [14], [15] of a server
machine is running the mechanism program, the scalability
and efficiency are required to be considered.

In technique, our work differs from previous in two
folds. Firstly, we show that combining dynamic program-
ming and the technique of rounding for monotone FP-
TAS [16] can lead to a deterministic truthful mechanism for
our problem. Secondly, our designed FPTAS can also trans-
form into a computational efficiency ε-truthful mechanism.

In summary, the main contributions of this paper are as
follows:

• We propose a deterministic truthful mechanism with
FPTAS approximated and theoretically prove it to be
truthful and can be approximated within 1 + ε for
any given ε > 0, the running time of our mechanism
is in polynomial of n and 1/ε, where n is the number
of tenants in the datacenter. We further investigate
VCG-based mechanisms. We show that our provided
FPTAS allocation algorithm can be turned into a ε-
truthful mechanism. The VCG-based mechanism will
speed up the computation of the payments when the
number of tenants is small.

• We provide a holistic solution for the MEDR prob-
lem, with a highly efficient MEDRAS prototype with
the integration of all our truthful FPTAS mechanism
algorithms. The MEDRAS is a routine that can be
run independently and easily used in practical dat-
acenter systems. We develop a simulation test tool,
design a large quantity of test cases with simula-
tion datasets generated by real datasets and per-
form an overall performance evaluation to demon-
strate the effectiveness of our truthful FPTAS mech-
anism. The tool is opensourced in github (URL:
https://github.com/ZJU-INCAS/medras).

The rest of this paper is organized as follows. In Sec-
tion 2, we state and formalize MEDR, a mechanism design
problem for EDR. In Section 3, we present an FPTAS mecha-
nism to solve the MEDR problem. In Section 4, we depict the
VCG-based mechanism. In Section 5, we propose a MEDR
auction system and depict its design and implementation. In
Section 6, extensive simulation experiments are conducted
to evaluate the performance. The related work is presented
in Section 7, and concluding remarks are given in Section 8.

2 PROBLEM STATEMENT

In this section we state the MEDR problem that arises in
colocation datacenter Emergency Demand Response (EDR).

There are n tenants in a colocation datacenter. Each
tenant i ∈ {1, 2, . . . , n} subscribes a certain amount of power
supply from the colocation operator. In the event of EDR,
the colocation operator is required to reduce W amount of
energy, such as W kWh electric power. Given power-based
contracts, tenants may not have the incentive to participate
in EDR unless they are awarded. Even if some tenants
are interested in EDR, their reduction may not reach the

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. ##, NO. ##, ## 2019 3

reduction target W . In case of not reaching the target, the
colocation operator can use backup energy storage (BES) to
fulfill the shortage of the EDR target. Let z be the amount of
grid-power demand reduction due to the usage of BES, and
α be the cost of BES usage per kWh. In general, the cost of
generating electricity from a backup power is much higher
than the cost of an ordinary power supply. The power from
BES usually is produced by pre-charged batteries and diesel
generators, which are very expensive and/or environment
unfriendly [17]. We could assume that BES can be large
enough. Because BES needs to cover the target W if there
is no participant in.

Each tenant i submits a bid with two parameters (si, bi),
where si is the amount of planned energy reduction and
bi is the claimed cost due to such a reduction. However,
each tenant i has its own true type (ei, ci), where ci is the
cost due to a reduction of ei energy. The value ei and ci
are only known to the tenant i. The cost ci is an integer
because it represents the money. The cost ci comes from
various sources. One case is that one has to pay for the
delay of executing a task due to load reduction. It could also
be the cost if one moves the task to some other computing
platform, such as a rented VM. Thus ci represents a general
cost due to such load reduction.

Moreover, each tenant is single-minded [2], [16], [18] such
that each tenant is restricted to one single bid. The single-
minded bidders are only interested to get a specified scalar
value if they get a whole amount of energy reduction and
get zero value otherwise. The single-minded case indicates
that the allocation algorithms shall output binary integral
solutions, i.e., either tenant i will be accepted or not.

Every tenant has the freedom to choose participation
in this EDR or not. If a tenant is not willing to partic-
ipate in this EDR, we can suppose its bid is (0, 0). Let
B = {(s1, b1), . . . , (sn, bn)} be the set of bids by the n tenants.
Based on this bidding B, the colocation operator will pay
money Pi(B) to each tenant i to encourage their participa-
tion in this EDR. Let Ui(B) = Pi(B) − ci be the utility of
tenant i according to the biddings of B. Clearly each tenant
i attempts to maximize his/her utility. According to [2],
the power consumption in colocation data center consists
of both the energy consumption of tenants and also the
consumption of management such as cooling. There is a
ratio called Power Usage Effectiveness (PUE) γ between
the total energy consumption to the energy consumed by
tenants, which typically ranges from 1.1 to 2.0 [19].

A tenant is a winner if her/his bidding is successful. Let
N be the set of winners. To meet the energy reduction target
W , we require that z + γ

∑
i∈N si ≥ W . The social cost of

the colocation operator is αz +
∑

i∈N Pi(B). The social cost
of tenants is

∑
i∈N (ci − Pi(B)). Thus, the total social cost is

equivalent to aggregate tenant cost due to energy reduction
plus the operator’s cost for using BES, i.e., αz +

∑
i∈N ci . The

goal of the mechanism design is to minimize the total social
cost, meanwhile, no tenant can benefit by proposing false
bidding. The optimization version of this problem can be
formulated as an integer programming. Let xi = 1 if tenant i
is a winner, i.e. i ∈ N , otherwise xi = 0.

min αz +
∑n

i=1 xici (1)

TABLE 1
Summary of Notations

Notation Description
n total number of agents
ei energy reduction by agent i
ci the cost incurred of agent i by energy reduction
si reported energy reduction by agent i
bi reported cost of agent i
W energy reduction target
z energy provided by BES
xi binary variable indicates whether agent i win or not
B−i the bids except tenant i
Pi (B) the money paid to the agent i according to the bids B
Ui (B) the utility of agent i according to the bids B
α the cost of BES usage per kWh
γ PUE(ratio of the total energy consumption to the energy consumed by tenants)

subject to
z + γ

∑
i∈N si ≥ W (2)

xi = {1, 0}, ∀i ∈ {1, 2, . . . , n} (3)

Table 1 summarizes the key notations in the paper.
The studied MEDR problem is closely related to knap-

sack auction problems. According to objective functions,
we define two types of mechanism design for knapsack
problems. One is the max-knapsack problem, in which each
agent has a private valuation for having his/her objective
in the knapsack. The problem is to find an allocation of the
agents without exceeding the capacity of the knapsack as so
to maximize the sum of each agent’s value. Another one is
the min-knapsack problem, in which each agent has a private
cost for having his/her item in the knapsack. The problem
is to find an allocation to cover the knapsack, while the sum
of the agents’ cost is minimized.

For any instance I, we define by C(M(I)) the social cost
of the mechanismM, which is the total costs of tenants plus
the operator’s cost for using BES. A mechanismM is said to
be ρ-approximated if C(M(I)) ≤ ρ · C(OPT(I)), where OPT
is an optimal algorithm.

Let B−i = {B1, . . . , Bi−1, Bi+1, . . . , Bn} be the bids except
tenant i’s bid.
Definition 1. (Truthfulness): A mechanism M consisting of

an allocation function A and a payment function P is
truthful (or strategy-proof) if for every tenant i with the
true cost ci cannot increase his/her utility by declaring
any other bid (si, bi) regardless of every bidding of other
agents B−i , i.e., it satisfies

Ui((ei, ci), B−i) ≥ Ui((si, bi), B−i).

This definition implies that truthful reporting is a dominant
strategy for every tenant.
Definition 2. (Individual rationality): A mechanism M is

said to be individual rationality if every agent always
obtains non-negative utility with bidding of the true cost,
i.e., Ui((ei, ci), B−i) ≥ 0 for any i and any B−i .

Remark: As we know, demand response usually is due
to the lack of energy, hence, in our work, we set the target W
as a low bound. In some scenarios that the reduced energy
shall be exactly the target W to maintain the balance of
energy. All our algorithms can be easily adapted to this
case. We can modify the line 6 in Algorithm 1 (line 10 in
Algorithm 2) such that y(i, c) equals infinity. That means we
return the solution with γA(i, c) ≤ W . In this sense, in this

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. ##, NO. ##, ## 2019 4

work, we only deal with the general case that the target W
is a lower bound.

3 FPTAS TRUTHFUL MECHANISM

In this section, we describe an approximated FPTAS truthful
mechanism to solve the MEDR problem.

3.1 Dynamic Programming

Our dynamic programming requires to solve the min-
knapsack problem as a subroutine. The min-knapsack prob-
lem consists of finding a subset of items, where each item i
has a cost ci and a size si , with the minimum cost such that
the sum of their sizes is at least as large as a specified ca-
pacity. Based on the idea of the max-knapsack problem [20],
Tauhidul [21] gave a dynamic programming for the min-
knapsack problem. We adopt this dynamic programming in
(4) [21] as a subroutine in the following.

Let S(i, c) denote a subset of {1, . . . , i} whose cost is
exactly c and whose total size is maximized. Let A(i, c) be the
size of S(i, c) (A(i, c) = 0 if no such set exists). The recursive
formula of the dynamic programming is given in (4). In this
formula A(i, c) gives a tabular of an optimal value for each
subproblem (i, c).

A(i, c) =

max{A(i − 1, c), si + A(i − 1, c − ci)},
i f ci ≤ c

A(i − 1, c), otherwise
(4)

In the following, we design dynamic programming
based on the recursive function (4). The Algorithm 1 (Algo-
rithm DOPT(I)) gives the details of the dynamic program-
ming for the MEDR problem.

Algorithm 1: Algorithm DOPT(I): Dynamic Pro-
gramming for MEDR

Input: The set of tenants I, and demand capacity W .
1 Run the dynamic programming based on the

formula (4) for the input I, and obtain A(i, c) for
each (i, c), where 1 ≤ i ≤ n and 0 ≤ c ≤

∑
i ci ;

2 for each (i, c) do
3 if γA(i, c) < W then
4 y(i, c) = α(W − γA(i, c)) + c
5 else
6 y(i, c) = c

Output: Return min(i,c) y(i, c)

Theorem 1. The dynamic programming DOPT(I) produces
an optimal solution for any instance of tenants I with
demand request W , and unit cost of BES α. The running
time is pseudo-polynomial, which is O(n2cmax), where
cmax is the largest cost.

Proof. Any optimal solution consists of two parts, one is
covered by BES, and another is covered by items from I.
Let p, q be the cost due to tenants I and BES, respectively.
Let cmax = maxi ci be the largest cost among all tenants.

In the dynamic programming we iterate all possible (i, c),
where c ∈ C = {0, 1, 2, . . . , ncmax}. Any cost due to tenants I

is in C, hence p ∈ C. Note that the dynamic programming
A(i, p) provides the maximal size whose cost is exactly p. If
γA(n, p) is less than W , and we require at least W − γA(n, p)
BES to cover the knapsack in the optimal. Therefore, p+ q ≥
α(W − γA(n, p)) + p. If γA(n, p) ≥ W , then q = 0. These two
cases are both covered in the dynamic programming, which
implies that the dynamic programming outputs an optimal
solution.
The running time of dynamic programming is O(n2cmax),
since i ≤ n, and c ≤ ncmax, and the running time is bounded
by the iterative function of (i, c). �

3.2 Monotone FPTAS Mechanism
Motivated by the truthful mechanism for max-knapsack
problem [16], we propose a deterministic truthful mech-
anism. To keep the truthful property, the idea of our
mechanism is to give a monotone algorithm. To obtain an
FPTAS, we need to design a monotone algorithm whose
approximation ratio is arbitrarily close to 1. The detailed
algorithm is given in Algorithm 3, which iteratively calls a
subroutine Algorithm 2 (Algorithm Ar (k, I)). The motivation
of Algorithm 2 is to keep the truthfulness, in which the
rounding of each item is independent of the bidding of all
tenants.

Algorithm 2: Algorithm Ar (k, I)

Input: Given parameter k, and the instance
I = (s1, c1), . . . , (sn, cn).

1 Let ak = ε2k
n+1 ;

2 Let T(k) be the subset of items with cost at most of
2k ; We construct a new instance I ′ based on T(k),
which is identical to T(k), but the cost of each item
c′ is given as below.

3 for i ∈ T(k) do
4 c′i = b

ci
ak
c

5 Run the dynamic programming DOPT(I ′)for the
items in T(k) with cost c′i , and obtain A(i, c′);

6 for each (i, c′) do
7 if γA(i, c′) < W then
8 y(i, c′) = b α(W−γA(i,c

′))

ak
c + c′

9 else
10 y(i, c′) = c′

Output: Return min(i,c′) y(i, c′)

Algorithm 3: Monotone FPTAS AFPT AS

Input: Given ε > 0, and the instance I.
1 Let best ←∞, and cmax = maxi ci .
2 for k ← 1 to log cmax do
3 S′(k) ← Ar (k, I); /* call Algorithm 2 (Algorithm

Ar (k, I)) */
4 if S′(k) < best then
5 best ← S′(k)
6 S̄ ← the subset items that contained in the

solution of S′(k)

Output: S̄, and use BES W − γ
∑

i∈S̄ si

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. ##, NO. ##, ## 2019 5

Lemma 1. For any ε > 0, Algorithm AFPT AS has approxima-
tion ratio of 1 + ε, and its running time is polynomial in
1/ε, n, log cmax .

Proof. Let cq be the largest cost among the items in an
optimal algorithm to cover the knapsack. Define k∗, such
that

2k
∗−1 < cq ≤ 2k

∗

.

Denote O∗ to be the subset of items in the optimal
solution. Let y∗ be the size BES used in the optimal solution.
Let O∗(R) = O∗

⋃
{R}, where R is a virtual item with size y∗

and cost αy∗. Let OPT be the cost of the optimal solution.
We have OPT ≥ cq .

Note that in T(k∗) as denoted in the algorithm Ar (k, I),
we have O∗ ⊆ T(k∗). Let S̄ be the subset of items returned by
the algorithm Ar (k, I) with k∗ as the parameter, and let (ī, c̄)
be the pair of values that reaches the minimum of Ar (k, I).

Let O′ be the subset of items with costs rounded by 2k
∗

from O∗. Let R′ be a virtual item with size y∗/ak∗ .
Let ALG be the final cost incurred by the algorithm

AFPT AS , we can use the following inequalities to approxi-
mate the cost by the algorithm with the optimal solution.

ALG =
∑
i∈S̄

ci +max(α(W − γA(ī, c̄)), 0)

≤
∑
i∈S̄

ci +max(b
α(W − γA(ī, c̄))

a∗
k

c, 0)ak∗ + ak∗

≤
∑
i∈S̄

(c′i · ak∗ + ak∗) +

max(b
α(W − γA(ī, c̄))

a∗
k

c, 0) · ak∗ + ak∗

≤
∑
i∈S̄

c′i · ak∗ +max(b
α(W − γA(ī, c̄))

a∗
k

c, 0) · ak∗

+(n + 1)ak∗

≤
∑

i∈O′
⋃
{R′ }

c′i · ak∗ + (n + 1)ak∗

≤
∑

i∈O∗
⋃
{R}

ci + (n + 1)ak∗

≤ OPT + ε2k
∗

≤ (1 + 2ε)OPT .

The running time is poly(1/ε, n, log cmax). In algorithm
Ar (k, I), the largest cost of T(k) is 2k , the running time of
dynamic programming is O(n3/ε). The total running time of
AFPT AS is O(1

ε n3 log cmax). �

3.2.1 Monotone
A declaration B′i = (s

′
i, b
′
i) is said to be a higher declaration

than the bidding Bi = (si, bi) if s′i ≥ si and b′i ≤ bi , i.e.
Bi � B′i . A bid (si, bi) is said to be a winner declaration if this
item is selected in the knapsack.

Definition 3. (Monotone) We say that an algorithm A is
monotone if, for any bidder (si, bi) is a winning decla-
ration then any higher declaration also wins.

To design a monotone algorithm, some times we need
to choose the output with minimum or maximum value

among several monotone algorithms. The monotone prop-
erty may not be valid anymore for such selecting, we need
another property named bitonic to deal with this challenge.
Bitonic was introduced by Mu’Alem and Nisan [22] for
maximum problems, such as multi-unit auction, and it was
generalized by Briest, Krysta, and Vöcking [16].

In this work, we apply the technique of bitonic for
minimum problems.

Definition 4. (Bitonic) Given a function f : An →, a mono-
tone algorithm A is bitonic with respect to the function f
if for any agent i, the following hold:

1) If i ∈ A(B), then f (A(Bi, B−i)) ≥ f (A(B′i, B−i)) for any
Bi � B′i .

2) If i < A(B), then f (A(Bi, B−i)) ≥ f (A(B′i, B−i)) for any
B′i � Bi .

Intuitively, a monotone algorithm A is bitonic with re-
spect to f if f is a monotone non-decreasing function of each
agent’s valuation while she is not selected for the solution,
but becomes monotone non-increasing after she is selected
for the solution. In this work, the function f is the objective
function, i.e., social welfare. The bitonic is indeed required
to guarantee the monotone for compositions of algorithms.

Algorithm 4: MIN(A1, A2) Operator
Input: Bidding B

1 Run the algorithm A1 and A2;
2 Let swA1 (B) and swA2 (B) be the social welfare of

Algorithm A1 and A2, respectively.
3 if swA1 (B) ≤ swA2 (B) then
4 return A1(B);
5 else
6 return A2(B).

Lemma 2. Let A1 and A2 be two monotone bitonic alloca-
tion algorithms. Then, M = MIN(A1, A2) is a monotone
bitonic allocation algorithm.

Proof. This can be easily extended from the proof of the The-
orem 2 in [22], which was designed for the MAX operator.
�

Lemma 3. Algorithm Ar (k, I) is monotone and bitonic with
respect to the objective function.

Proof. Algorithm Ar (k, I) returns an optimal solution, if an
agent reports a higher bidder, then the optimal algorithm
will accept this item too. Suppose an agent i was not
selected, and any lower declaration B′i , if this item was
accepted then the objective function shall be smaller, other-
wise, the objective remains, and hence the objective function
is non-increasing for any lower bidders. Thus the property
of bitonic follows. �

Lemma 4. Algorithm AFPT AS is monotone and bitonic with
respect to the objective function.

Proof. The lemma follows immediately according to
Lemma 2 and Lemma 3. �

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. ##, NO. ##, ## 2019 6

3.2.2 Payment
In this section, we will provide a payment scheme for our
problem. Lehmann et al. [18] provided a sufficient condition
for a truthful mechanism for single-minded combinatorial
auctions. The payment in [18] is called critical payment,
which was also used for MAX-knapsack problem [16]. Our
payment scheme was adapted from [16], [18], and the criti-
cal payment was defined similarly as below.
Definition 5. (Critical payment) Let algorithm A be a mono-

tone algorithm, if we fix the declaration B−i , and then for
any agent i and fixed bidding si , there exists a unique
cost θAi , called critical payment, such that ∀bi ≤ θAi , bi is a
winning declaration, and ∀bi > θAi is a losing declaration.

To calculate the critical value for any agent j, we fix
the other agents’ bids and then use a binary search on
the interval [bj,maxj bj] and repeatedly run the allocation
algorithm A to check whether the agent j is selected.
Definition 6. The payment pA associated with the monotone

allocation algorithm A that is based on the critical value
is defined by pA

j = θAj if agent j wins with allocation
Alloci(B) = si , and pA

j = 0 otherwise.

A mechanism MA = (A, pA) is normalized , if its payment
pA is defined as in Definition 6, i.e. agents that are not se-
lected pay 0. We say that algorithm A is exact if Alloci(B) = si
or Alloci(B) = ∅ for each declaration (si, bi).

In this work, we only consider a limited type of agent
called single-minded, the cost function∞ if Alloci(B) > si and
ci otherwise. That will force each agent does not overbid
his/her size if allocation algorithm is an exact algorithm.
Theorem 2. [16] Let A be an exact and monotone algorithm

for some minimization problems and single-minded
agents. Then mechanism MA = (A, pA) is truthful and
individually rational.

Proof. In [16], they gave detailed proof for utilitarian prob-
lems, and thus it holds for the MAX-knapsack problem.
Moreover, in their paper, it was shown that the proof is
valid for minimization problems, such as the reverse single-
minded multi-unit auction problem, which is equivalent
to the minimum knapsack problem. For completeness, we
restate the main idea as follows. Fix B−i . Considering a
bidding (ei, bi) and truthful bidding (ei, ci), respectively.

1) Both bidds of agent i are winners. The payments θi
for both bidders are the same because the critical pay-
ment returns a maximum value of winner declarations.
Hence, the utility is the same and non-negative.

2) Bid (ei, bi) wins and bid (ei, ci) loses. In this case ci >
θi ≥ bi , the utility of bid (ei, bi) is negative, while the
utility of truthful bid (ei, ci) gets utility zero because of
losing. In this case the agent i will bid truthful and the
utility is zero.

3) Bid (ei, bi) loses and bid (ei, ci) wins. We have θi ≥ ci ,
and they have the same utility θi − ci , which is non-
negative.

From the critital payment and truthfulness, we get that the
mechanism is individual rationality. Because the utility of
any agent i is non-negative according to the above three
cases. �

Algorithm 5: Algorithm PA(B)

Input: The bidding B of all tenants, and the
allocation algorithm A

1 for i ← 1 to n do
2 Let zi = 1 if the ith item is selected in the

knapsack by the allocation problem A(B), and 0
otherwise.

3 Let h = αγsi and l = bi .
4 while h − l ≥ 1 do
5 b′i = (h + l)/2;
6 zi = A(B−i, (si, b′i));
7 if zi == 1 then
8 l = b′i
9 else

10 h = b′i

11 Pi(B) ← l.
Output: The payment Pi(B) for each agent i.

Theorem 3. The mechanism MAFPT AS = (AFPT AS, pAFPT AS)

is truthful and it is an FPTAS mechanism, i.e. its ap-
proximation ratio is 1 + ε for any given ε > 0, and the
total running time of the mechanism is polynomial in
1/ε, n, log cmax .

Proof. Algorithm PA(B) (Algorithm 5) is a critical payment,
Algorithm AFPT AS is an exact algorithm, and bitonic with
respect to the objective function according to Lemma 4. Thus
the mechanism MAFPT AS is truthful followed by Theorem 2.
The FPTAS is achieved in Lemma 1.

�

Theorem 4. The runtime complexity of algorithm FPTAS-
PAY is O(1

ε n4 log cmax log(αγsmax), where α, γ are con-
stants, n is the number of tenant bids, cmax is the largest
bid cost, and smax is the largest bid size.

Proof. The FPTAS payment algorithm AFPT AS−PAY is based
on FPTAS, namely, it firstly invokes the FPTAS algorithm
to achieve the winner tenant items and then uses a bitonic
method in Algorithm PA(B) to set payment for each winner.

According to Algorithm PA(B), the bitonic while-
iteration invokes FPTAS algorithm repeatedly to set pay-
ment for each winner. For winner k with bid data (sk, bk), the
runtime of each bitonic iteration Tbk is log(h − l) ∗ TFPT AS =

log(αγsk − bk) ∗ TFPT AS . Let n∗∗ be the number of win-
ners, obviously, n∗∗ ≤ n, then the runtime of AFPT AS−PAY

TFPT AS−PAY can be concluded by TFPT AS−PAY = TFPT AS ∗

(1 + n∗∗ ∗ log(αγsk − bk) ≤ TFPT AS ∗ (1 + n)log(αγsk − bk) ≤
TFPT AS ∗ (1 + n)log(αγsmax). So we have the runtime of
AFPT AS−PAY O(1

ε n4 log cmax log(αγsmax), where α, γ and ε
are constants, n is the number of tenant bids, cmax is the
largest cost of bid cost, and smax is the largest size of bid
size. �

4 VCG-BASED MECHANISMS

One of the basic game-theoretic requirements in mechanism
design is that of truthfulness, and the VCG mechanism will
ensure truthfulness. However, the VCG mechanism was

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. ##, NO. ##, ## 2019 7

criticized for the computation efficiency. To get a tradeoff
between truthfulness and computation efficiency, we inves-
tigate VCG-based mechanisms to solve the MEDR problem.

4.1 The VCG-based Mechanism
In fact, the well-known Vickrey-Clarke-Groves (VCG) [23]
mechanism can be applied to our MEDR problem. Note that
a VCG mechanism requires an optimal allocation algorithm
to guarantee the truthfulness.

In detail, the VCG mechanism is defined as below.
Definition 7. (The VCG Mechanism) The VCG mechanism

consists of an optimal assignment algorithm A∗ and a
payment function P, where

1) A∗ returns the minimum cost of MEDR to cover the
demand response requirement.

2) Pi the payment for agent i is defined as Pi = A∗(d−i) −
A∗j,i(d).

Here A∗(d−i) is the minimum cost of MEDR without count-
ing agent i, and A∗j,i(d) is the total cost of an optimal
solution for all agents minus the cost of agent i.

In detail, to solve our MEDR problem, we present the
VCG-MEDR Mechanism as follows.
Definition 8. (The VCG-MEDR Mechanism) The VCG-

MEDR mechanism consists of the optimal assignment
algorithm DOPT(I) as given in Algorithm 1, and the
payment function VCG-PAY is given in Definition 7.

The VCG-MEDR mechanism is truthful and it provides
an optimal assignment. However, the running time of VCG-
MEDR might grow exponentially for large instances of
MEDR. Finally, one can check that the running time of the
VCG-MEDR Mechanism is O(n3cmax).

4.2 ε-truthful Mechanism
As we know, a truthful mechanism with VCG-based pay-
ment is only valid if the allocation algorithm is an opti-
mal algorithm. It is not guaranteed that an approximated
allocation algorithm with VCG-based payment will lead
to truthful bidding. However, a VCG-based payment with
approximated allocation algorithm brings great benefit in
designing an allocation algorithm, because it is quite easy
to compute the payment, with running time proportional to
the allocation algorithm. One question remains that can we
bound the maximal gain in utility that an agent can expect
to obtain through non-truthful bidding? This motivated us
to study a mechanism with an approximated allocation
algorithm and with VCG-based payment.

For each agent i, in a bidding B = ((si, bi), B−i), we define
the ex post regret to agent i at the bidding profile B as
follows,

regreti(B) = sup(si,bi)(Ui((si, bi), B−i) −Ui((ei, ci), B−i)).

Thus a mechanism is said to be ε-truthfulness if
|regreti(B)| ≤ ε for all agent i. That is to say that an agent
can gain at most ε through some non-truthful strategy in a
ε-truthful mechanism.

Let C∗((ei, ci), B−i)) denote the minimum cost of the social
welfare given the reported bidding of every agent j , i and
the true value of agent i.

Theorem 5. A VCG-based mechanism with an FPTAS alloca-
tion algorithm is εC∗((ei, ci), B−i))-truthfulness for agent i
given bids B−i from other agents.

Proof. Let C̄(B) denote the social cost generated by the ap-
proximation allocation algorithm AFPT AS given the bidding
B, and C̄(B−i) be the social cost generated by the allocation
algorithm AFPT AS without counting the agent i.

From the approximation allocation algorithm AFPT AS ,
we know that

C̄(B) ≤ (1 + ε)C∗(B),

where C∗(B) is the optimal cost with respect to the bids B.
Let x̄ be the allocation implemented by the approxima-

tion algorithm AFPT AS , where x̄i = 1 if agent i was a winner.
Denote costi(x̄) to be the reported cost of agent i given the
allocation x̄. Let ci(x̄) be the true cost of agent i, which
ci(x̄) = ci if x̄i = 1 and ci(x̄) = 0 if x̄i = 0.

The VCG-payment of agent i is Pi(B) = C̄(B−i) −∑
j,i costj(x̄), and the utility of agent i with respect to VCG-

payment is

Ui(B) = C̄(B−i) −
∑
j,i

costj(x̄) − ci(x̄)

Note that C̄(B−i) is independent on agent i, and then
agent i tries to maximize his/her utility by declaring some
value to minimize

∑
j,i costj(x̄) + ci(x̄).

The maximal benefit of agent i from reporting a non-
truthful value occurs when the allocation of truthful re-
vealing is as bad as possible, that is (1 + ε)C∗((ei, ci), B−i)).
Since, the agent tries to reveal a value to minimize∑

j,i costj(x̄) + ci(x̄), and the minimal value can be achieved
is C∗((ei, ci), B−i)). The agent i’s gain in utility in comparison
with truthful bidding, is

(1 + ε)C∗((ei, ci), B−i)) − C∗((ei, ci), B−i)) = εC∗((ei, ci), B−i)).

�

4.3 Runtime Hinge
We have proposed DOPT, FPTAS, VCG-PAY, and FPTAS-
PAY algorithms. We will compare the runtime performance
of all the algorithms in this section. We hope to find a
guideline to choose algorithms based on the instance we
have.
Definition 9. (Runtime Hinge) Let P be the common pa-

rameter variable of the two algorithms a, b. The runtime
Ta,Tb of the algorithms a, b are increasing with respect
to the growing value of P. If there exists a constant C,
such that Ta = Tb when n = C (where n is the number
of tenants), then we call the constant C is the hinge of
algorithms a, b based on P, denoted by H(a, b)|P.

By Definition 9, we know one algorithm will run faster
than another when the number of tenants larger than the
hinge. We consider the runtime hinge between algorithms
DOPT and FPTAS, and algorithms VCG-PAY and FPTAS-
PAY.
Theorem 6. The algorithm DOPT and FPTAS have a hinge

C based on the number of tenant bids n, namely,
H(ADOPT , AFPT AS)|n.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. ##, NO. ##, ## 2019 8

Proof. Let k1, k2 be two positive constants. The runtime of
algorithm DOPT (ADOPT) TDOPT is O(n2cmax), which can be
denoted by TDOPT = k1n2cmax . The runtime of algorithm
FPTAS (AFPT AS) TFPT AS is O(1

ε n3 log cmax), which can be
denoted by TFPT AS = k2

1
ε n3 log cmax .

Let TDOPT be equal to TFPT AS , we have k1n2cmax =

k2
1
ε n3 log cmax and then conclude that the hinge C = n =

k1/k2εcmax/log cmax , where k1 and k2 can be determined by
the fitting method through experiments. �

By Theorem 6, the algorithm FPT AS will run faster when
n ≥ k1/k2εcmax/log cmax .
Theorem 7. The algorithm VCG-PAY and FPTAS-PAY have

a hinge C based on the number of tenant bids n, namely,
H(AVCG−PAY, AFPT AS−PAY)|n.

Proof. We compare the FPTAS-PAY runtime with the VCG-
PAY algorithm. Given two positive constant numbers
l1, l2 > 0, then 1) the runtime of AVCG−PAYTVCG−PAY

can be denoted by l1n3cmax ; 2) according to Theorem 4,
the runtime of AFPT AS−PAYTFPT AS−PAY can be denoted by
l2 1
ε n4logcmax log(αγsmax).

Let TVCG−PAY be equal to TFPT AS−PAY , then we have
l1 1
ε n4 log cmax log(αγsmax) = l2n3cmax =⇒ the hinge C =

n = l2/l1εcmax/(log cmax log(αγsmax)), where l1 and l2 can
be determined by the fitting method through experiments.

�

By Theorem 7, we conclude that the runtime of FPTAS-PAY
will be larger than the runtime of VCG-PAY when the num-
ber of tenant agents n ≥ l2/l1εcmax/(log cmax log(αγsmax)).

5 MEDR AUCTION SYSTEM

In this section, we implement all the algorithms and build
MEDRAS, an Auction System as a holistic solution for the
MEDR problem.

5.1 Integrate Framework
As far as the system framework is concerned, we give the
design of the MEDRAS in large scale colocation datacenters
and the integrated framework of MEDRAS shown in Fig. 1.

The integrate framework of MEDRAS logically consists
of three layers, namely, user client, MEDRAS platform layer
as well as MEDRAS service layer, respectively.

The user client refers to the user of MEDRAS, in which
there are two types of users, i.e., the tenant users and
the colocation operators. The colocation operator charges
sending EDR signals, launching auctions and maintain the
auction bid data information. While the tenant users who
are willing to join in MEDR auction and can submit the bid
data to the auction.

The MEDRAS platform, briefly called MEDRAS plat,
denotes a uniform operation platform for auction activity. It
includes an Auction Management Information System (AMIS)
and a Power Control System (PCS).

The AMIS is responsible for managing the elemental
auction information, including the auction participant user
information and bid data. In AMIS, the colocation operator
can send EDR signals and launch a new auction, while the
tenants can declare and submit bids. The PCS is a system
used to control power supply according to the tenant’s EDR

L2: MEDRAS Platform

L3: MEDRAS Service

L1: User Client

Tenant 1 Tenant 2 Tenant N
...

Bidding Decision Maker
(algorithm: FPTAS/DOPT/VCG)

Colocation
Operator

7. Send policy of
power supply

3.Request auction service
for bidding decision

with input (bids,W,α,γ,ε)

MEDRAS service program

Auction Controller
(main program)

4.Invoke MEDR decision
 algorithms (bids,W,α,γ,ε)

Auction Management
Information System

5.Return bidding results

2. Submit bids(si,bi)

6.Return winning bids,
utility, payments

1. Send EDR signals and
launch auctions 8. Return results

Input flow Output flow

Power Control
System

Colocation
Datacenter

Fig. 1. The integrate framework of MEDRAS

auction bidding results. It charges executing power supply
policies for balancing power use according to the power size
of bidding winners.

The MEDRAS service layer is designed as an auc-
tion service program of MEDRAS, briefly denoted
by (MEDRAS sp), which is realized as a special stand-
alone running service program. It involves the auction
controller (AC) and the bidding decision maker (BDM) func-
tions. The AC is the main program of MEDRAS service. It is
responsible for interaction with AMIS, including functions
of receiving the bidding requests from AMIS, invoking
BDM program to make a bidding decision, obtaining the
decision results and returning back to AMIS. The BDM
implements all the MEDR algorithms presented in Section 3,
including the DOPT, FPTAS, VCG-PAY and FPTAS-PAY.

5.2 Working Process
Fig. 1 illustrates the basic working process against an auc-
tion. We further explain it as follows.
(1) Upon the arrival of the EDR signals, the colocation

operator (Auctioneer) launches an auction by AMIS
in the MEDRAS platform and send the EDR signal to
tenants to participate this auction activity.

(2) The tenant users who are willing to participate the
auction will login the MEDRAS platform and submit
their own bids with a size of power and cost they are
willing to accept in AMIS.

(3) The AMIS sends a request of auction service for bidding
decision making to the AC in the MEDR server. Before
the sending, AMIS must prepare the data information
which are required to be used in bidding decision algo-
rithms.

(4) The AC in the MEDRAS service layer firstly receives
the bid information from the AMIS, then ask for BDM
program to handle the bidding decision.

(5) In bidding decision, the BDM will firstly input all data
from the AC and invoke a decision algorithm, such
as FPTAS/VCG, and return back to AC the results of

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. ##, NO. ##, ## 2019 9

winning tenants with minimized social cost, utility and
payments.

(6) The AC returns back the decision results to AMIS. At
the same time, a new power supply request will be
transmitted to the PCS for carrying out power policy
from winner tenants in datacenter.

(7) The winning bids information will be published in the
MEDRAS platform. The tenant users can learn the result
through AMIS.
In the end, not only will the winning tenants achieve

compensation rewards from the colocation data center op-
erator, but the new policy of power supply will be submitted
to the PCS and be executed for the EDR.

5.3 System Prototype
We build a prototype of MEDR auction system by imple-
menting the MEDRAS plat and MEDRAS sp respectively
as two modules.

The MEDRAS plat module includes AMIS and PCS
which might be closely related to the practical datacenter
system. The implementation arises challenges when com-
bining with the actual datacenter system, such that it must
consider all kinds of used technologies such as the database,
the system architecture and associated development meth-
ods. For simplification, we only consider the basic functions
to build the prototype of a simple auction system based on
the web using PHP and MySQL database technology. We
develop some web pages for the basic functions of AMIS
and employ MySQL database to uniformly store the basic
auction data. On the whole, the purpose of the MEDRAS
platform is to collect the auction bidding information for
MEDRAS sp to make the decision of winning bids.

The MEDRAS sp module is realized by integrating all
the algorithms into a stand-alone running program. We use
the C/C++ programming language to develop this program.
The MEDRAS sp is realized as a command-line parameter
program with some command line parameters. When we
start a bidding decision making for a given auction, we can
write a shell command script and easily run in a command
shell environment. The running of the bidding decision
algorithm needs firstly to input the required parameter data.
We prepare a standard data file to store the auction bid data
and another standard file to save the result data. We set the
tenant’s bid data with the name of the standard data file to
the MEDRAS sp command. In MEDRAS sp command, we
set one parameter as the name of the input data file and one
parameter as the name of an output data file. During the
whole running, this command will automatically read bid
data from the input file, invoke the MEDR bidding decision
algorithms to conclude the result winning bids, and finally
save the result data into the output file. After the running is
completed, the results are pooled in the output file.

5.4 Some Implementation Tricks
Some small tricks can be used in the implementation of

MEDRAS sp.
Note that the dynamic programming algorithm DOPT(I)

needs a data structure to store the optimal tabular value
for each subproblem (i, c). Given a set of tenants with the
number n, the bid of tenant i, (si, ci), where 1 ≤ i ≤ n. The

tabular can be designed as a two-array structure A[N][NC],
where N > n, NC >

∑
i ci . However, it comes one issue that

the size of tabular will be very large with the growing size
of N and NC and the program will require a large size
of memory to store the tabular data. The program cannot
run normally if the memory is not sufficient or too small.
To improve the memory efficiency, in our implementation,
we adopt a new one-array tabular, such as A[NC] to only
store the last line elements of A[N][NC] because the last
line includes all other optimal ones. We employ a bottom-
up method in which we create each element of this tabular
one by one reversely from the largest element to the first
one based on the recursive function 4. Moreover, to reduce
the running time, in the rounding procedure of algorithm
FPTAS AFPT AS , the value of k is setting to within log cmin
and log cmax.

In algorithm Monotone FPTAS AFPT AS , we observe that
there is no need for starting the k variable from 1 in the for
iteration sentence. More specifically, what if, in algorithm 2,
ak = ε2k

n+1 and for i ∈ T(k), we conclude c′i = b
ci
ak
c. However,

if k = 1, we may have ak < 1, then the c′i will be larger than
ci , resulting in that the computation scale of FPTAS will be
larger than the DOPT. Thus, in realistic implementation, we
improve it set the k start from the log cmin.

The MEDRAS sp is finally compiled by gcc/g++. The
compile parameter includes -O1,-O2, or -O3, and the default
compile is -O1. We found that MEDRAS sp performs the
different running times when it is compiled with different
compiling parameters. For example, the runtime in param-
eter -O3 is only one-fifth of the parameter -O1.

6 PERFORMANCE EVALUATION

In this section, we perform a large number of experiments to
evaluate the performance of MEDRAS and demonstrate the
effectiveness of our mechanism. During the whole working
process of MEDRAS, the stage of running the BDM service
program is the stage that determines the performance or the
one in which it has the most critical impact on performance.
So in this work, we focus on evaluating the performance of
mechanism associated algorithms in the MEDRAS service
program. We extend the MEDRAS service program to build
an automatic test program, called BDM-sim, select the
performance metrics, design the test cases, run all the cases
and get the corresponding result for analysis.

6.1 Performance Metrics
We choose four performance metrics, namely, approxima-
tion ratio, tenants’ utility, social cost reductions as well as the
runtime metric. The approximation ratio metric is concluded
by a ratio between the social cost obtained through the
FPTAS and the one obtained through the DOPT mechanism.
This metric can determine that how close the solution ob-
tained through the FPTAS is to the optimal solution. The
tenants’ utility and social cost reductions are used to evalu-
ate the cost efficiency of our FPTAS mechanism. The runtime
metric is used to evaluate the runtime performance in a
physical server machine with a fixed hardware environment
condition, such as the number of CPU cores and memory
space capacity. Finally, we will explore the maximum regrets
among all tenants when a VCG-based mechanism is applied.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. ##, NO. ##, ## 2019 10

6.2 Test Case Design

We generate auction dataset and design comprehensive test
cases for performance evaluation.

6.2.1 Auction Dataset

We prepare for several auction bid datasets. The most ele-
mental content of the auction dataset primarily is made up
of a number of basic auction data. An auction data contains
an EDR reduction target W and N pairs of tenant bid (si, bi),
where i = 1, 2, . . . , N . We combine some of real data and
some of generated random data to build auction datasets
for the performance test experiments.

1. Small Scale Dataset: We consider a typical auction
with a small scale number of N(N = 12) participating
tenants (denoted as Tenant #1, Tenant #2, ...,Tenant #12) in
a colocation data center. Each tenant i has mi(= 200, 000)
homogeneous servers. The power of each server includes
150W computing power and d0 = 100W idle power [24]. That
is to say, if a server is turned off, we can obtain 100W power.
If a server is running a workload, it needs 150 + 100 = 250W
power. Hence, each tenant has a demand power at least
50MW.

The data in an auction primary include EDR reduction
target W and tenant bids. For simplicity, we generate auction
simulation datasets according to the real datasets includ-
ing total EDR energy reduction by PJM on November 15,
2018 [25] and workload traces used in [2] which are collected
from [26] (“Hotmail” and “MSR”) and [27] (“Wikipedia”), as
shown in Fig. 2(a) and Fig. 2(b). The EDR energy reduction
data consists of 24 EDR reduction event numbers. Each
number represents an energy reduction of DR that arises in
an hour. Like [2], the tenants’ bids are generated randomly
with consideration of the workload traces and some data
center factors, such as the general cost of a server or whole
datacenter and the power energy price in market. We dupli-
cate each workload for all tenants with randomness up to
20%. For the total 12 tenants, we firstly generate 24 random
numbers ri between 0.01 and 0.20, where i = 1, 2, . . . , 12.
Then we duplicate the workload for four tenants by Hot-
mail, four by MSR and four by Wikipedia, respectively. We
assume that each size of the workload denotes a ratio of the
total number of servers which is in running status. If we turn
off some servers, then we can slash energy consumption.
The total energy reduction by tenant i is si = ni .d0,i .T , where
T = 1 hour in simulation.

We conclude the size of tenants’ bid by the formula: si =
workloads ∗ M ∗ ri ∗ d0/1, 000, 000(MW), where M = 200, 000
and d0 = 100. The size s is set in a range on 1 ∼ 80 MWh [26].
Besides, according to Zhang [2]’s work, tenants can reason-
ably save 6.7 ∼ 13.3 cents/kWh (depending on electricity
price) power when they house servers in their datacen-
ters [26]. Likewise, tenants can save 67 ∼ 133 $/MWh.
Hence we produce several random numbers rb between
67$ and 133$ for each tenant as a bid power price in which
tenants are willing to take part in the auction activity. The
ith tenant bid is concluded by a formula bi = si ∗ rbi . Finally,
all the generated data is shown in Table 2. Each tenant bid
Bi has a pair of numbers (si, bi), which denotes a size of
energy reduction and cost for supplying its responding size
of power, respectively. Besides, The table also lists the total

1 3 5 7 9 11 13 15 17 19 21 23
0
50
100
150
200
250
300
350
400
450
500
550
600
650

Time(h)

E
D

R
(M

W
/h

)

558
502

531
522

309

234 242

65

215

EDR energy reduction target

84
35

111

422

34

124

558
473

563550

448
414426

230
199

(a) Total EDR energy reduction by
PJMon November 15, 2018.

0 3 6 9 12 15 18 21 24
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Time(h)

N
or

m
al

iz
ed

 u
sa

ge
 (%

)

Workload traces

Wiki pedia
MSR
Hotmail

(b) Normalized workloads in dis-
tinct hour time.

Fig. 2. The source dataset for bidding decision simulation.

sum of bid size
∑

i si and bid cost bi . Most of the hours
except the Time hour 17 have the auction with the total sum
of bid size larger than the given EDR W , which indicates
that all EDR W will be covered by the tenants’ bid size.

2. Large Scale Dataset: Besides, we also consider the
large scale auction scenario with the number of tenant bids
N >= 100 because many present colocation datacenters,
such as Google, Amazon, and Aliyun cloud, etc. possess
multi-tenants with a great number of tenants [28]. We gener-
ate a large scale simulation auction dataset with the number
of tenant N >= 100 and the total sum cost of all tenant bids
>= 50, 000, because in our mechanism algorithms, the col-
umn number of tabular used in the dynamic programming
and the time complexity is closely related to the total cost of
all tenant bids. In each tenant bid, the size is randomly in a
range from 1 to 15, and the cost is concluded by a formula
size ∗ r , where r is a general market power price randomly
in a range from 67 to 133 per MWh. We set the number of
tenant bids from 100 to 1, 000 in a growing step 100 and
build a total of 10 groups of bid datasets according to the
number of tenant bid. The EDR reduction target W is set the
default half of the total size of all tenant bids and will vary
in the later evaluation.

6.2.2 Test Cases
We combine the auction datasets with the FPTAS mecha-
nism algorithm relevant parameters, such as α, γ, and ε, etc.
and design a lot of test cases for all the performance metrics
to evaluate the performance of our proposed mechanisms.

For the metrics of approximation ratio, utility and social
cost compared to BES only, we build test cases based on
the small scale datasets shown in Table 2 and vary the
parameters α, γ, and ε. In each case, we vary one parameter
and set the other two parameters to be constant. To evaluate
the performance impact resulted from α parameter, we build
the case by setting γ to 1.6 [19], ε to 0.6 and varying the
parameter α in a range from 140 to 320 [24], [29] with an
increasing step length 20. Similarly, for the parameter γ,
ε is set to 0.6, α is set to 200$, and γ changed from 1.1
to 2 with an increasing step length 0.1. For the parameter
ε, α is set to 200$, γ is set to 1.6, and ε is changed from
0.1 to 1.0 with an increasing step 0.1. In sum, we have a
total of 24 ∗ (10 + 10 + 10) = 720 test case data. For the
runtime performance metric, we use the large scale dataset
to generate a lot of test cases by varying the EDR reduction
target W , the number of tenant bids n and the algorithm
parameters α, γ, and ε.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. ##, NO. ##, ## 2019 11

TABLE 2
The tenant bidding data

Time W Ten.#1 Ten.#2 Ten.#3 Ten.#4 Ten.#5 Ten.#6 Ten.#7 Ten.#8 Ten.#9 Ten.#10 Ten.#11 Ten.#12 Total ∑
si

W(h) s1 b1 s2 b2 s3 b3 s4 b1 s5 b5 s6 b6 s7 b7 s8 b8 s9 b9 s10 b10 s11 b11 s12 b12
∑
si

∑
bi

1 84 15 1,440 11 1,254 51 4,539 20 2,060 59 6,431 57 5,757 12 804 55 5,390 18 2,214 7 910 48 4,656 32 2,592 385 38,047 4.6
2 35 30 2,550 10 750 22 2,266 14 1,736 56 5,320 45 4,455 13 910 34 4,012 6 522 5 600 48 4,224 63 7,938 346 35,283 9.9
3 111 38 3,078 47 3,384 50 3,800 35 3,115 58 6,960 40 3,400 15 1,455 8 776 13 1,274 5 575 48 5,376 29 2,755 386 35,948 3.5
4 422 43 3,440 21 1,617 60 4,980 27 2,322 44 3,652 57 4,731 11 737 44 5,324 39 3,315 23 1,909 29 3,422 51 3,570 449 39,019 1.1
5 558 57 4,560 35 4,200 57 4,332 39 2,964 61 8,052 54 3,780 43 3,053 57 7,581 68 8,772 66 7,590 45 5,850 41 3,690 623 64,424 1.1
6 502 27 2,160 33 3,432 22 2,530 37 4,810 63 5,418 53 6,625 47 4,136 51 4,539 61 8,052 69 7,314 48 3,408 67 6,298 578 58,722 1.2
7 531 59 6,136 17 1,207 32 3,872 42 4,872 57 6,612 57 4,047 44 5,236 63 5,859 46 3,910 68 8,568 41 4,756 62 7,564 588 62,639 1.1
8 522 58 7,018 28 2,408 26 2,938 49 3,479 56 5,880 61 6,161 47 4,324 67 5,561 45 4,590 67 5,159 45 3,150 63 8,127 612 58,795 1.2
9 309 37 4,292 11 1,023 15 1,590 36 4,500 32 3,648 53 3,710 36 2,412 45 5,310 43 5,117 23 3,059 49 3,283 25 1,750 405 39,694 1.3
10 234 25 1,850 9 1,089 58 7,424 11 880 38 4,408 47 5,734 46 5,842 37 3,552 37 3,848 37 4,218 50 5,000 25 2,100 420 45,945 1.8
11 242 45 5,670 24 2,496 26 1,794 27 2,106 29 2,929 45 3,870 41 3,198 31 3,596 36 4,032 17 1,904 28 2,352 35 3,605 384 37,552 1.6
12 34 38 3,724 16 1,280 34 2,754 22 2,244 18 1,440 44 5,764 42 5,334 25 1,750 39 4,875 15 1,545 40 3,040 39 3,900 372 37,650 10.9
13 124 22 1,650 19 2,299 21 2,268 33 4,224 23 2,185 9 1,152 27 2,808 23 2,346 13 1,495 15 1,425 11 1,177 6 792 222 23,821 1.8
14 65 20 1,840 13 1,482 17 1,462 30 2,310 28 2,520 7 651 23 2,967 21 2,373 11 1,441 10 670 12 1,464 3 210 195 19,390 3.0
15 215 29 3,161 26 2,678 19 2,261 34 3,230 14 1,722 23 2,300 33 3,927 37 3,219 18 1,476 8 608 51 5,559 11 1,188 303 31,329 1.4
16 558 51 4,794 38 3,268 57 5,301 38 4,408 21 2,793 51 3,621 56 5,992 47 6,016 68 8,772 67 8,174 56 6,776 56 5,152 606 65,067 1.1
17 563 24 1,896 10 850 67 6,767 40 4,800 19 1,767 45 5,490 37 3,700 52 4,472 63 7,497 69 9,039 32 3,776 54 4,914 512 54,968 0.9
18 550 68 6,596 34 3,740 65 7,085 36 4,536 48 6,384 58 4,524 46 3,312 41 4,674 48 4,752 32 2,592 65 8,450 61 7,320 602 63,965 1.1
19 473 55 4,730 29 2,639 15 1,380 35 3,045 31 3,999 65 5,330 50 5,600 24 1,680 38 2,660 52 4,836 63 8,190 58 7,540 515 51,629 1.1
20 448 19 2,318 19 1,824 31 3,844 25 2,750 58 4,234 57 7,524 47 3,901 48 4,512 38 4,104 7 483 55 4,180 57 5,757 461 45,431 1.0
21 426 35 2,765 33 2,409 55 6,435 13 1,222 36 3,060 33 3,630 46 4,462 30 3,360 47 3,619 31 3,937 55 3,960 56 4,424 470 43,283 1.1
22 414 32 2,336 23 2,323 25 2,925 13 1,378 42 4,326 49 3,724 32 3,200 19 1,273 48 3,792 34 3,400 58 6,322 50 5,900 425 40,899 1.0
23 230 8 696 35 4,515 48 4,992 38 3,420 56 5,488 40 2,960 49 5,341 25 2,475 43 3,999 28 3,360 27 3,510 24 2,784 421 43,540 1.8
24 199 11 1,001 42 5,040 47 4,606 15 1,965 23 2,599 59 7,788 49 4,949 39 4,446 45 3,105 7 868 52 4,108 46 4,278 435 44,753 2.2

140 160 180 200 220 240 260 280 300 320
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70

α (140→320)

R
at

io
 (

F
P

T
A

S
/D

O
P

T
)

Time(1) Time(2) Time(3) Time(4)
Time(5) Time(6) Time(7) Time(8)
Time(9) Time(10) Time(11) Time(12)
Time(13) Time(14) Time(15) Time(16)
Time(17) Time(18) Time(19) Time(20)
Time(21) Time(22) Time(23) Time(24)

Comparison of ratio on varying α

baseline: 1+ε

(a) The ratio between FPTAS and
DOPT for 24 EDR instances on
varying α, where γ = 1.6, ε = 0.6

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70

γ(1.1→2.0)

R
at

io
 (

F
P

T
A

S
/D

O
P

T
)

Time(1)
Time(2)
Time(3)
Time(4)
Time(5)
Time(6)

Time(7)
Time(8)
Time(9)
Time(10)
Time(11)
Time(12)

Time(13)
Time(14)
Time(15)
Time(16)
Time(17)
Time(18)

Time(19)
Time(20)
Time(21)
Time(22)
Time(23)
Time(24)

Comarison of ratios on varing γ

baseline: 1+ε

(b) The ratio between FPTAS and
DOPT for 24 EDR instances on
varying γ, where α = 160$, ε = 0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00

ε(0.1→1.0)

R
at

io
 (

F
P

T
A

S
/D

O
P

T
)

Time(1)
Time(2)
Time(3)
Time(4)
Time(5)
Time(6)

Time(7)
Time(8)
Time(9)
Time(10)
Time(11)
Time(12)

Time(13)
Time(14)
Time(15)
Time(16)
Time(17)
Time(18)

Time(19)
Time(20)
Time(21)
Time(22)
Time(23)
Time(24)

Comarison of ratios on varing ε

baseline: 1+ε

1.1
1.2

1.3

1.4
1.5

1.9 2.0

1.6

1.8

1.7

(c) The ratio between FPTAS and
DOPT for 24 EDR instances on
varying ε, where α = 160$, γ =
1.6

100 200 300 400 500 600 700 800 900 1000
0.9990

0.9995

1.0000

1.0005

1.0010

1.0015

1.0020

1.0025

The number of tenant bids (100→1000)

R
at

io
 (

F
P

T
A

S
/D

O
P

T
)

The distribution of ratios in large scale scenario

(d) The ratio distribution of 100
auction bid cases on varying the
large scale number of auction
bids, where α = 180, γ = 1.6, ε =
0.5.

Fig. 3. The performance evaluation on approximation ratio for distinct time of EDR instances with the number of tenant bids N = 12.

6.3 Experimental Result Analysis
We develop an automatic simulation software tool
MEDRAS sim, based on the MEDRAS sp. The tool can
automatically generate the simulation datasets in batch, the
test case data, run the testing and obtain results for analysis.
We run all experiments in a specific physical server machine,
a Dell PowerEdge R730, with dual Intel(R) Xeon(R) CPU E5-
2650L v4 @ 1.70GHz (total 56 CPU cores) and 64GB memory.
The server runs CentOS 7.0 Linux with GCC version 4.8.5
20150623. The simulation tool is compiled by g++ with
optimization parameter -O3 for supporting better parallel
efficiency. We prepare all test case data together into a
standard data file that is used as input for the algorithms
in the MEDRAS service program. During the test running
process, our MEDRAS sp in batches reads the data, executes
all algorithms one by one, and output the performance
result data to an output data file for analysis. The result
information includes a list of test case result, for each case,
it consists of the runtime of DOPT, FPTAS, FPTAS-PAY, and
VCG-PAY algorithms, the payment, Non-negative utilities
obtained by FPTAS and VCG for each winner tenant, and

the social cost by BES. We analyze the experimental results
in detail as follows.

6.3.1 Approximation Ratio Performance
Our truthful FPTAS mechanism in MEDRAS can achieve a
1+ ε approximation ratio in theory. The approximation ratio
is concluded by a ratio between the minimized total social
cost derived from the FPTAS algorithm Y(FPTAS) and the
DOPT-optimal one Y(DOPT), i.e., ratio = Y(FPT AS)

Y(DOPT) .
We run all test cases for all the 24 EDR reduction in-

stances which are shown in Table 2. The result is shown in
Fig. 3. Fig. 3(a), Fig. 3(b) and Fig. 3(c) are corresponding
to the performance result from three parameters of FPTAS
mechanism algorithm. The Fig. 3(d) is the ratio performance
result from the large scale test cases.

From all the figures we observe that all ratios are be-
tween 1 and 1+ ε. Moreover, the ratios are very close to 1. It
means that the FPTAS solution is near-optimal. All experi-
mental results reveal that the FPTAS solution achieves better
performance than the theoretical upper bound. Among the
parameters α, γ, ε, the largest impact factor is the parameter

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. ##, NO. ##, ## 2019 12

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0
14

00
0

16
00

0
18

00
0

20
00

0
22

00
0

24
00

0
26

00
0

28
00

0
30

00
0

FPTAS#1
VCG#1

FPTAS#2
VCG#2

FPTAS#3
VCG#3

FPTAS#4
VCG#4

FPTAS#5
VCG#5

FPTAS#6
VCG#6

FPTAS#7
VCG#7

FPTAS#8
VCG#8

FPTAS#9
VCG#9

FPTAS#10
VCG#10

FPTAS#11
VCG#11

FPTAS#12
VCG#12

Utility($)

Te
na

nt
(#

1→
#1

2)

 Compare the utility of FPTAS with VCG
on distint tenants

Time(14)

Time(24)

Time(7)

Time(1) Time(13)
Time(2)
Time(3)

Time(4)

Time(5)

Time(6)

Time(8)

Time(9)
Time(10)

Time(11)

Time(12)

Time(15)

Time(16)

Time(17)

Time(18)

Time(19)

Time(20)

Time(21)

Time(22)

Time(23)

(a) Compare tenants’ non-negative utilities in FPTAS with that in
VCG mechanism, where α = 200, γ = 1.6, and ε = 0.6.

FP
TA

S_
(1

)
V

C
G

_(
1)

FP
TA

S_
(2

)
V

C
G

_(
2)

FP
TA

S_
(3

)
V

C
G

_(
3)

FP
TA

S_
(4

)
V

C
G

_(
4)

FP
TA

S_
(5

)
V

C
G

_(
5)

FP
TA

S_
(6

)
V

C
G

_(
6)

FP
TA

S_
(7

)
V

C
G

_(
7)

FP
TA

S_
(8

)
V

C
G

_(
8)

FP
TA

S_
(9

)
V

C
G

_(
9)

FP
TA

S_
(1

0)
V

C
G

_(
10

)
FP

TA
S_

(1
1)

V
C

G
_(

11
)

FP
TA

S_
(1

2)
V

C
G

_(
12

)
FP

TA
S_

(1
3)

V
C

G
_(

13
)

FP
TA

S_
(1

4)
V

C
G

_(
14

)
FP

TA
S_

(1
5)

V
C

G
_(

15
)

FP
TA

S_
(1

6)
V

C
G

_(
16

)
FP

TA
S_

(1
7)

V
C

G
_(

17
)

FP
TA

S_
(1

8)
V

C
G

_(
18

)
FP

TA
S_

(1
9)

V
C

G
_(

19
)

FP
TA

S_
(2

0)
V

C
G

_(
20

)
FP

TA
S_

(2
1)

V
C

G
_(

21
)

FP
TA

S_
(2

2)
V

C
G

_(
22

)
FP

TA
S_

(2
3)

V
C

G
_(

23
)

FP
TA

S_
(2

4)
V

C
G

_(
24

)0
2000
4000
6000
8000

10000
12000
14000
16000
18000

Time(h)

U
til

ity
($

)

Compare Tenants' Non-Negative Utility of FPTAS with VCG

TENANT#1
TENANT#2
TENANT#3

TENANT#4
TENANT#5
TENANT#6

TENANT#7
TENANT#8
TENANT#9

TENANT#10
TENANT#11
TENANT#12

(b) Compare tenants’ non-negative utilities in FPTAS with that in
VCG mechanism for 24 EDR events, where α = 200, γ = 1.6, and
ε = 0.6.

140 160 180 200 220 240 260 280 300 320
10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%

α (140→320)

So
ci

al
co

st
 r

at
io

 (%
)

Time(1)
Time(2)
Time(3)
Time(4)
Time(5)
Time(6)

Time(7)
Time(8)
Time(9)
Time(10)
Time(11)
Time(12)

Time(13)
Time(14)
Time(15)
Time(16)
Time(17)
Time(18)

Time(19)
Time(20)
Time(21)
Time(22)
Time(23)
Time(24)

Comparison of social cost ratio between
FPTAS and BES on varing α

45%
40%

35% 32%
29%

26%
24% 23%

21% 20%

34%
30%

26% 24%
22% 20%

18% 17% 16% 15%

(c) The normalized social cost ratio between
FPTAS and BES, where γ = 1.6, ε = 0.6 and α
varying from 140 to 320(+20).

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%

γ(1.1→2.0)

So
ci

al
co

st
 r

at
io

 (%
)

49%

Time(1)
Time(2)
Time(3)
Time(4)
Time(5)
Time(6)

Time(7)
Time(8)
Time(9)
Time(10)
Time(11)
Time(12)

Time(13)
Time(14)
Time(15)
Time(16)
Time(17)
Time(18)

Time(19)
Time(20)
Time(21)
Time(22)
Time(23)
Time(24)

Comparison of social cost ratio between
FPTAS and BES on varing γ

44%
40% 37%

34%
32%

29% 28%
25% 24%

35%
32% 30%

24% 24% 23% 22%
20% 18% 18%

(d) The normalized social cost ratio between
FPTAS and BES, where α = 200, ε = 0.6 and γ
varying from 1.1 to 2.0(+0.1).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
20%

25%

30%

35%

40%

45%

50%

ε(0.1→1.0)
So

ci
al

co
st

 r
at

io
 (%

)

Comparison of social cost ratio between
FPTAS and BES on varing ε

Time(1)
Time(2)
Time(3)
Time(4)
Time(5)
Time(6)

Time(7)
Time(8)
Time(9)
Time(10)
Time(11)
Time(12)

Time(13)
Time(14)
Time(15)
Time(16)
Time(17)
Time(18)

Time(19)
Time(20)
Time(21)
Time(22)
Time(23)
Time(24)

32% 32% 32% 32% 32% 32% 32% 32% 32% 32%

24% 24% 24% 24% 24% 24% 24% 24% 24% 24%

(e) Comparison of social cost ratio between
FPTAS and BES, where α = 200, γ = 1.6 and
ε varying from 0.1 to 1.0(+0.1).

Fig. 4. The performance evaluation on tenants’ Non-negative utilities and social costs compared to BES only for all 24 EDR events.

ε. With the increase of ε, the ratio increases a bit but still
is far smaller than the theoretical upper bound 1 + ε. These
experimental results show that the parameter ε did not to be
very small, we still can achieve near-optimal performance.
This observation is useful, and we can reduce the running
time that depends on 1/ε by setting ε to a relatively large
number, such as ε = 0.6.

6.3.2 The Cost Efficiency of FPTAS Mechanism
We consider the cost efficiency of the FPTAS mechanism
and the VCG mechanism. It means that how much cost
the colocation datacenter operator will pay for the tenants
in an auction using these mechanisms and how much cost
the colocation datacenter will have if they do not carry out
the auction. We adopt the agents’ utilities and social cost
reduction compared to BES only metrics to evaluate the cost
efficiency of our mechanisms. We compare the two metrics
obtained from the FPTAS and VCG mechanism.

1. Tenants’ utilities: We study each tenant or agent’s
utility in all the experiments for the two mechanisms. Note
that agents’ utilities are concluded from the payment for
each tenant subtracts his/her actual cost. The individual
rationality of both FPTAS and VCG mechanism has been
proved. And the experimental results also confirm that each

tenant obtains a non-negative utility in each variant of
our experiment. We only show the result in Fig. 4(a) and
Fig. 4(b) by letting α=200$, γ = 1.6 and ε = 0.6. In the
Figure, U FPTAS i and U VCG i denote the utility of the
tenant i concluded from the FPTAS and VCG mechanism,
respectively.

We would like to find which mechanism will achieve
more utility to encourage agents to participate in.

From the point of view of an individual agent, there is no
conclusion that which mechanism might lead to more utility.
According to Fig. 4(a), although most of the tenants will ob-
tain more utilities from the FPTAS mechanism, the tenants
3 and 5 achieve more utility from the VCG mechanism.

But if we regard the total utilities obtained by all tenants,
Fig. 4(b) shows that the FPTAS mechanism will achieve
more than VCG mechanism. The Fig. 4(b) also indicates
1) the 24 hour times EDR reduction W have different total
utilities; 2) the more EDR W and the more tenant bids will
derive the more utilities.

2. Social cost reduction compared to BES only: Each
winner tenant has obtained a non-negative utility, which
implies that the colocation operator will pay a lot of money
to these tenants. To study whether this payment is too much,
we investigate the social costs compared to the one we only

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. ##, NO. ##, ## 2019 13

use BES. We use a normalized percentage (%) µ concluded
from the ratio between the cost of FPTAS and that of the
BES only. The social cost reduction can be concluded by
a formula: BES ∗ (1 − µ). The larger percentage means the
smaller the reduction of social costs. Firstly, we know that
µ ≤ 1, i.e., there must have social cost reduction because the
mechanism will use BES instead of the tenant whose unit
cost is more than α.

We compare all social costs in the 24 hour time EDR
events on varying the parameters α, γ and ε in FPTAS. The
results are illustrated in Fig. 4(c), Fig. 4(d) and Fig. 4(e). The
results show

1) the percentages µ are declined when α or γ increases.
Large α means that it is more expensive to use BES.
Large γ indicates less energy reduction from tenants
will still meet the target, which incurs smaller social
costs as well.

2) the percentages µ are stable as ε varies. The reason
behinds it is that the social costs are not changing
too much as ε varies. One can see it in Fig. 3(c), the
approximation ratio is close to 1, which means the social
cost is close to the optimal cost that is independent of
ε.

3) we can get the largest EDR reduction 1 − 15% = 85%
from Fig. 4(c), and the smallest one 1 − 49% = 51% of
BES only from Fig. 4(d).

In sum, the social cost given by the FPTAS mechanism is
much smaller than that one of BES only, and the colocation
data center needs to enable more tenants to attend the DR
activities.

6.3.3 Runtime Performance

We evaluate the runtime performance in the small scale
case of the 24-hours time EDR auction instances. We then
take a holistic evaluation of the performance influence of
the associated parameters in our mechanism algorithms. In
our MEDR model, the relevant parameters include the EDR
reduction target W and tenant bid (size, cost) in an auction,
the number of tenant bids n, α, γ and ε. We design a lot of
cases for each parameter performance test. All the results
are shown in Fig. 5.

1. Small scale case: The small scale case is prepared
for the 24-hour time EDR auction instances. The result is
shown in Fig. 5(a). We observe that all MEDR algorithms
seem running very quickly because every algorithm in each
hour’s time EDR instance is completed in less than 0.15
seconds. The runtime of all algorithms in the 24-hour time
EDR instances is different and presents a similar distribu-
tion and changing trend. In all EDR instances, the FPTAS
algorithm outperforms the fastest runtime while the VCG-
PAY takes the longest runtime. What‘s more, in the FPTAS
even the slowest runtime that happened in the 17th-hour
time EDR instance is still less than 0.000, 1s. The runtime of
the FPTAS-PAY algorithm performs about 10 times longer
than the runtime of FPTAS. The slowest runtime point at
the 17th-hour time EDR instance does not reach 0.01s. The
runtime of the DOPT algorithm gets a range between 0.006s
and 0.02s. It exists a long distance from the runtime of the
FPTAS. The runtime of the VCG-PAY algorithm is naturally
longer than the DOPT because it depends on the sum of the

DOPT run times with the same number of auction winner
tenants. After all, this experiment test manifests that FPTAS
and FPTAS-PAY are high-efficiently adaptable to be used in
small scale case EDR auction.

2. Runtime changing trend on varying the number of
tenant bids: According to the runtime complexity analysis,
it is clear that an auction with a larger number of tenant
bids may incur the longer runtime of all algorithms. We
design a series of auction test cases for distinct number
scales, which is changed from a smaller number to a larger
one. Besides the number scale, all cases are provided with
the same randomly generated uniform distribution bid data
and EDR reduction target W . The α, γ, and ε parameters are
set the same fixed numerical value. We compare the runtime
of FPTAS with DOPT and the one of FPTAS-PAY with VCG-
PAY in two figures, respectively. After running all the cases,
the results are shown in Fig. 5(b) and Fig. 5(c). We vary
the number of tenant bids from 40 to 1000 for each case.
The α is set 160$/MWh, γ set 1.6 and ε set 0.6. The EDR
W is set 360, satisfying the total bid size τ ∗ γ ≥ W with a
guarantee of sufficient size of bids competing for the limited
EDR resources.

Both the two figures depict the similar growing trend
of the runtime with the increasing number of tenant bids.
In each figure, the two running time curves plot different
growth rates. Due to the FPTAS and DOPT algorithm or the
FPTAS-PAY and VCG-PAY algorithm have distinct runtime
complexity, we observe that 1) initially, in Fig. 5(b) the
FPTAS has the smaller runtime than DOPT and in Fig. 5(c)
the FPTAS-PAY smaller than VCG-PAY; 2) Then, as the scale
number of tenant bid n gets larger and larger reaching a
hinge at some scale number C, in which both the FPTAS
and DOPT as well as the FPTAS-PAY and VCG-PAY have
the same runtime; 3) when the number n > C FPTAS begins
to get bigger than the DOPT and the FPTAS-PAY bigger
than the VCG-PAY in runtime. In our cases, the runtime
of FPTAS and DOPT have a hinge C1 700 in Fig. 5(b) and
FPTAS-PAY and VCG-PAY have a hinge C2 60 in Fig. 5(c).
From Fig. 5(c), We further find that especially the runtime
of FPTAS-PAY possesses a much more sharply growing rate
than the VCG-PAY when the scale number n across after the
hinge (n > 700) and increases continuously. When the scale
number n = 500, the FPTAS-PAY reaches the runtime more
than 8, 000s, while VCG-PAY does not get 8, 000s even the
scale number n reaches 1, 000. In the case with the number
n = 1, 000, our real runtime of FPTAS-PAY is 122, 933.096s
about 34h, more than one day. It indicates that the FPTAS-
PAY can only be used for the type of long-term auction when
the number of scales is very large. Comparatively, the VCG-
PAY may be better. But for short term auction with a small
number scale such as n < 60, FPTAS will be the first choice
method.

3. Runtime changing trend on varying the bid cost: We
design 10 test cases for this scenario. We generate auction
bid data by randomizing the size s in a range 1 − S, and S is
set 10, 20, . . . , 100 ten times, respectively. We use a simulated
price of µ randomized in a real electricity market price range
67 − 133$. The cost of each bid is finally generated by µ ∗
s. The EDR reduction target W is set half of the sum total
size of all bids in order to the number of the winner bids
remains close the same. We generate ten auction cases with

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. ##, NO. ##, ## 2019 14

1 2 3 4 5 6 7 8 9 10 11 12131415161718192021222324
0.00006
0.00008
0.00010
0.0009
0.0072
0.0135
0.0198

0.05
0.07
0.09
0.11
0.13
0.15

Time(h)

Comparison of runtime with all algorithms

DOPT

FPTAS

FPTAS-PAY

VCG-PAY

R
un

tim
e(

s)

(a) Comparison of the runtime of
FPTAS, DOPT, FPTAS-PAY, and
VCG-PAY for the 24 hour time
EDR auction instances with 12
tenant bids, where γ = 1.6, ε = 0.6
and α = 200.

40 45 50 55 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
0.0
0.5
1.0

50

100

150

200

250

300

350

400

N(40→1000)

R
un

tim
e(

s)

Compare FPTAS with DOPT on varying N

DOPT FPTAS

98s

(b) Comparison of the FPTAS run-
time with DOPT for EDR in-
stances with distinct number of
tenant bids, where γ = 1.6, ε =
0.6, α = 160, and EDR W=360.

40 45 50 55 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
0
5

10
15
20

100

2000

3900

5800

7700
8100

48100
88100

128100

N(40→1000)

R
un

tim
e

of
 p

ay
m

en
t(s

)

Compare FPTAS-PAY runtime with VCG-PAY

VCG-PAY

FPTAS-PAY

3.25s

(c) Comparison of FPTAS-PAY
runtime with VCG-PAY on vary-
ing the number of tenants, where
EDR W = 360, γ = 1.6, ε = 0.6
and α = 160

11
07

22
23

36
83

47
16

59
52

73
66

79
30

93
48

10
91

2
12

41
6

0.00
0.05
0.10

1
3
5
5

20
35
50
65
80
95

110
125
140
155

c_max(1,107→12,416)

R
un

tim
e(

s)

Runtime comparison on varying c_max

DOPT

FPTAS

FPTAS-PAY

VCG-PAY

(d) Compare the runtime of all
algorithms on varying the cmax ,
where γ = 1.6, ε = 0.6, α = 160,
and the number of tenant N =
100.

11
8

23
6

35
4

47
2

59
1

70
9

82
7

94
5

10
64

11
82

13
00

14
18

15
37

16
55

17
73

0.0
0.1
0.2
0.3
0.4
0.5
0.6

10
20
30
40
50
60
70
80

W(118→1773)

Runtime comparison on varying EDR(W)

DOPT

FPTAS

FPTAS-PAY

VCG-PAY

R
un

tim
e(

s)

(e) The runtime comparison on
varying the EDR W , where γ =
1.6, ε = 0.6, α = 160, the number
of tenant N = 100, the total bid
size S = 740 and EDR W varying
from 118 to 1773

140 160 180 200 220 240 260 280 300 320
0.00
0.05
0.10
0.3
0.4
0.5
10
12
14
16
18
20
22
24

α (140→320)

Runtime comparison on varying α

DOPT

FPTAS

FPTAS-PAY

VCG-PAY

R
un

tim
e(

s)

(f) The runtime comparison on
varying α, where the number of
tenant bids N , N = 100, γ = 1.6,
ε = 0.6 and EDR target W =
370(0.5).

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.0
0.1
0.2
0.3
0.4
0.5
0.6

8
11
14
17
20
23
26

γ(1.1→2.0)

Runtime comparison on varying γ

DOPT

FPTAS

FPTAS-PAY

VCG-PAY

R
un

tim
e(

s)
(g) The runtime comparison on
varying γ, where the number of
tenant bids N , N = 100, α = 200,
ε = 0.6 and EDR target W =
370(0.5).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.0

0.1

0.2

0.3

0.4

0.5
10
30
50
70
90

110
130

ε(0.1→1.0)

Runtime comparison on varying ε

DOPT

FPTAS

FPTAS-PAY

VCG-PAY

R
un

tim
e(

s)

(h) The runtime comparison on
varing γ, where ε = 0.6 and
α = 160.

Fig. 5. The performance evaluation on runtime.

distinct S corresponding to the number from 10 to 100. Each
auction case has 100 tenant bids. Other parameters are set
default, i.e., the α is set 160$/MWh, γ set 1.6 and ε set 0.6. We
consider the max of cost cmax in each case and its impact on
the runtime of all algorithms. Obviously, the cmax of 10−100
case is increasing gradually. The result is shown in Fig. 5(d).

It is observed that the runtime of VCG-PAY and DOPT
increases while there is not much more difference in the run-
time of FPTAS and FPTAS-PAY with the growing amount of
cmax . On the whole, comparing with the VCG-PAY, FPTAS-
PAY performs nearly no influence on the runtime in cmax ,
and the result is as same as the FPTAS and DOPT.

4. Runtime changing trend on varying the EDR reduction
target W : In this scenario, we consider the EDR reduction
target W and the total sum of tenant bid size τ. The larger
EDR reduction target W will require the more winner items
if an auction has sufficient tenant bids, namely, τ ∗ γ > W .
In our payment algorithm, the more winner items require
more iterations to setting payment for the winners. If the
EDR reduction target W > τ ∗γ then all tenant bid items will
be winners and the runtime of payment will be constant. We
design several cases to test the relation between the EDR
target W and the runtime performance for all algorithms.
Given an auction with N tenant bids, the total size of bids
is S, we provide a ratio ω, which is respectively set from 0.1
to 1.5 with a growing step +0.1, and use a formula τ ∗ γ ∗
ω to generate 15 EDR reduction target cases. The result is
shown in Fig. 5(e). The figure reveals that the runtime of the
two payment algorithms FPTAS-PAY and VCG-PAY gets a

growing trend with the increasing value of EDR reduction
target. When the EDR W ¿ τ ∗ γ, the runtime remains the
same because all participated tenant bids are winners and
these cases iteratively perform the same time iteration to set
payment for the winners by invoking FPTAS in FPTAS-PAY
or DOPT in DOPT-PAY.

5. Runtime changing trend on varying the α, γ and ε:
Ultimately we evaluate the impact of α, γ, and ε parameters
on the runtime performance of FPTAS algorithm, and ana-
lyze the changing trend of the runtime as these parameters
are changed regularly. We choose a large scale test case
in which the auction has 100 tenant bids. The results are
shown in Fig. 5(f), Fig. 5(g) and Fig. 5(h). Fig. 5(f) shows
that the α parameter has little impact on the FPTAS, DOPT
and VCG-PAY algorithms and the runtime of FPTAS-PAY
takes a slow growth with the increasing of α from 140 to
320 []. According to the Fig. 5(g) we find that the varying
γ parameter has little difference in runtime performance
of DOPT and FPTAS but the runtime of FPTAS-PAY and
VCG-PAY algorithm is changing faster and faster as the γ
gets bigger and bigger. We can see from Fig. 5(h) that the ε
parameter does not impact on the runtime performance of
DOPT and VCG-PAY algorithm, while the runtime of FPTAS
and FPTAS-PAY algorithm will become faster and faster as
the ε parameter becomes bigger and bigger.

6.3.4 Regret Analysis for ε-truthfulness Mechanism
We study the regret performance of each agent in a VCG-
based mechanism. To generate simulation data, we suppose

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. ##, NO. ##, ## 2019 15

that the given bidding is truthful. Then, we fix bids B−i , and
calculate the maximum regret of agent i by deviating the bid
of (si, ci) (varies si and or ci). Briefly, for each agent i, we fix
si and vary the ci by a scale, ci = δ∗si , in which δ is changing
from 1 to α with an increasing step 4. In each bidding, we
conclude the regret result and obtain the max regret. We use
the dataset of 24-hours auction settings. In each setting, we
get the ratio between the max regret of all agents and the
social cost. The results are shown in Table 3. As shown in
the table, most of the regret of agents is 0. Some non zero
regrets are less than the given ε . The results demonstrate
that every agent has little regret in the VCG mechanism,
which implies that there is no need for an agent to report
bids untruthfully.

TABLE 3
The ratio between maximal regret and minicost

Time(h)
ε 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Time(1) 0 0 0 0 0 0.053 0 0.053 0.053 0
Time(2) 0 0 0 0 0 0 0 0 0 0
Time(3) 0 0 0 0 0 0 0 0 0 0
Time(4) 0 0 0 0 0 0 0 0 0 0.009
Time(5) 0 0 0 0 0 0 0 0 0 0
Time(6) 0 0 0 0 0 0 0 0 0 0
Time(7) 0 0 0 0 0 0 0 0 0 0
Time(8) 0 0 0 0 0 0 0 0 0 0
Time(9) 0 0 0 0 0 0 0 0 0 0
Time(10) 0 0 0 0 0 0 0 0 0 0
Time(11) 0 0 0 0 0 0 0 0 0 0
Time(12) 0 0 0 0 0 0 0 0 0 0
Time(13) 0 0 0.007 0.007 0 0.013 0.010 0.007 0 0
Time(14) 0 0 0 0 0 0 0.057 0.003 0.003 0.003
Time(15) 0 0 0 0 0 0 0.012 0 0 0
Time(16) 0 0 0 0 0 0 0 0 0 0
Time(17) 0 0 0 0 0 0 0 0 0.165 0.174
Time(18) 0 0 0 0 0 0 0 0 0 0
Time(19) 0 0 0 0 0 0 0 0 0 0
Time(20) 0 0 0 0.024 0.024 0.024 0.024 0.004 0.004 0.021
Time(21) 0 0 0 0 0 0.008 0 0.008 0 0
Time(22) 0 0 0 0 0 0 0 0 0 0
Time(23) 0 0 0 0 0 0 0 0 0 0
Time(24) 0 0 0 0 0 0 0 0 0 0

7 RELATED WORK

There are several existing research efforts on mechanism
design for DR. For example, Ren and Islam [24] studied
the mechanism design for colocation demand response, but
their mechanism is not truthful and may not meet the
target of EDR. Chen et al. [30] studied the green colocation
data center by designing a pricing mechanism to fulfill
the energy reduction requirement for EDR. The energy
reduction from tenants is calculated by the price-taking
and price-anticipating equilibrium. Zhou et al. [7] studied
demand response on the geo-distributed cloud through the
VCG-based mechanism, in which the utility of each agent
depends highly on its interactive workload. Incentive mech-
anism for emergency demand response in geo-distributed
colocation data centers has also been studied in [31]. Sun
et al. [32] considered fairness among the mechanism design
and provided an online mechanism with a competitive ratio
of 3.2 in expectation. Ahmed et al. [33] proposed a contract-
based mechanism, in which the colocation operator offers a
set of contracts (i.e., a pair of energy reduction and rewards)

to tenants and tenants can voluntarily select none or one of
the contracts to accept, while the objective is to minimize
the operator’s cost, the sum of rewards plus the cost of
BES. Islam et al. [34] reduced the operator’s cost by learning
the tenants’ response to reward. Tran et al. [35], [36] used a
two-stage Stackelberg game to model the economic demand
response where the operator can adjust an elastic energy
reduction target. Recently the authors [37] also studied the
incentivization of energy reduction for EDR in Multi-Tenant
Mixed-Use buildings. They did not consider the truthful
feature of proposed mechanisms.

Another line of closely related work concerns DR in
smart grids. Zhou et al. [5] studied the mechanism design
on DR in smart grids. Let α = 1, and there is an upper
bound on the BES, i.e. y ≤ zmax. A randomized FPTAS
mechanism was given in [5]. Their idea is to combine with
smooth analysis and randomize auction. Actually, Dough
and Roughgarden [38] showed that if there exists an FPTAS
approximation, then this algorithm can be transformed into
a truthful in expectation mechanism that retains the FPTAS
property. The work in [38] does not require the existence of
FPTAS. However, it still remains open whether there exists
a deterministic FPTAS for this problem. Zhou et al. [39] pro-
posed a truthful online mechanism for location-aware tasks
in mobile crowd sensing, an effective incentive mechanism
for mobile crowd sensing, stimulating the participation of
smartphone users. Gao et al. [40] addressed a truthful incen-
tive mechanism design for a vehicle-based, nondeterministic
crowdsensing system. Our problem is deterministic and not
online.

A vast amount of work has been done for mechanism
design on multi-unit auction problem, in which there is a
set of identical items among bidders, and every bidder has
a private valuation function on the number of items, and the
problem is to find an allocation of the items to the bidders
so as to maximize the sum of bidders’ valuations [41],
[42], [43]. Our FPTAS mechanism was used for single-unit
auction. Briest et al. [16] presented a truthful FPTAS for the
max-knapsack problem. Our problem differs from the min-
knapsack in which we have BES such that the capacity of
the knapsack we need to cover is soft.

8 CONCLUSIONS

In this paper, we have studied MEDR, a mechanism design
problem for EDR in colocation data centers. To solve MEDR,
we have proposed a near-optimal deterministic truthful
mechanism, which is a 1+ε approximation ratio for a reverse
auction of EDR in colocation data centers. We also presented
a VCG-based mechanism. We have implemented MEDRAS,
an auction system combining our mechanism algorithms.
The codes for the system are open-sourced. We have also
developed MEDRAS sim, a bidding decision tool for simu-
lation experiments. The experimental results demonstrated
the effectiveness of our methods. In the future, we plan to
study the scalability of the FPTAS mechanism which will
be more challenging and interesting work. We also plan a
meaningful work to explore the parallel methods to speed
up the runtime of the key algorithms in the large scale
number case. Another direction is to study the mechanism

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. ##, NO. ##, ## 2019 16

design for multi-minded agents because many open prob-
lems arise in the area of DR. Our provided technique allows
us to deal with single-minded agents, wheres both the size
of energy and the cost are private information.

ACKNOWLEDGMENT

This research was in part supported by the National
Key R&D Program of China (2017YFB1401304), the Zhe-
jiang Provincial Key R&D Project Grant (2019C01055),
NSFC (11671355, 60970125, 61272303, 61772466, U1936215,
and U1836202), the Zhejiang Provincial Natural Science
Foundation for Distinguished Young Scholars under No.
LR19F020003, the Zhejiang Provincial Natural Science Foun-
dation under No. LSY19H180011, the Ant Financial Re-
search Funding, and the Alibaba-ZJU Joint Research Insti-
tute of Frontier Technologies. We thank all the reviewers for
giving us a lot of valuable suggestions.

REFERENCES

[1] W. Wei, F. Liu, and S. Mei, “Energy pricing and dispatch for
smart grid retailers under demand response and market price
uncertainty,” IEEE Transactions on Smart Grid, vol. 6, no. 3, pp.
1364–1374, 2017.

[2] L. Zhang, S. Ren, C. Wu, and Z. Li, “A truthful incentive mecha-
nism for emergency demand response in colocation data centers,”
in Proc. of IEEE INFOCOM, 2015.

[3] F. Kamyab, M. Amini, S. Sheykhha, M. Hasanpour, and M. M.
Jalali, “Demand response program in smart grid using supply
function bidding mechanism,” IEEE Transactions on Smart Grid,
vol. 7, no. 3, pp. 1277–1284, 2016.

[4] M. H. Y. Moghaddam, A. Leon-Garcia, and M. Moghaddassian,
“On the performance of distributed and cloud-based demand
response in smart grid,” IEEE Transactions on Smart Grid, vol. PP,
no. 99, pp. 1–1, 2017.

[5] R. Zhou, Z. Li, C. Wu, and M. Chen, “Demand response in smart
grids: A randomized auction approach,” IEEE Journal on Selected
Areas in Communications, vol. 33, no. 12, pp. 2540–2553, 2015.

[6] W. Shi, L. Zhang, C. Wu, Z. Li, and F. Lau, “An online auction
framework for dynamic resource provisioning in cloud comput-
ing,” ACM SIGMETRICS Performance Evaluation Review, vol. 42,
no. 1, pp. 71–83, 2014.

[7] Z. Zhou, F. Liu, Z. Li, and H. Jin, “When smart grid meets geo-
distributed cloud: An auction approach to datacenter demand
response,” in Proc. of IEEE INFOCOM, 2015.

[8] S. M. Errapotu, J. Loveless, R. Yu, S. Ren, M. Pan, and Z. Han, “Pri-
vacy preserving clock auction for emergency demand response in
colocation data centers,” in Proceedings of 2017 IEEE International
Conference on Communications (ICC 2017). IEEE, 2017, pp. 1–6.

[9] P. Jacquot, O. Beaude, S. Gaubert, and N. Oudjane, “Demand
side management in the smart grid: An efficiency and fairness
tradeoff,” in IEEE Pes Innovative Smart Grid Technologies Conference
Europe, 2018, pp. 1–6.

[10] R. Lavi and C. Swamy, “Truthful and near-optimal mechanism
design via linear programming,” Journal of the ACM (JACM),
vol. 58, no. 6, p. 25, 2011.

[11] W. Vickrey, “Counterspeculation, auctions, and competitive sealed
tenders,” The Journal of finance, vol. 16, no. 1, pp. 8–37, 1961.

[12] E. H. Clarke, “Multipart pricing of public goods,” Public choice,
vol. 11, no. 1, pp. 17–33, 1971.

[13] T. Groves, “Incentives in teams,” Econometrica: Journal of the Econo-
metric Society, pp. 617–631, 1973.

[14] J. Chen, Q. He, D. Ye, W. Chen, X. Yang, K. Chiew, and L. Zhu,
“Joint affinity aware grouping and virtual machine placement,”
Microprocessors & Microsystems, vol. 52, p. S0141933116304136,
2016.

[15] L. Mashayekhy, M. M. Nejad, and D. Grosu, “A ptas mechanism
for provisioning and allocation of heterogeneous cloud resources,”
IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 9,
pp. 2386–2399, 2015.

[16] P. Briest, P. Krysta, and B. Vöcking, “Approximation techniques for
utilitarian mechanism design,” SIAM Journal on Computing, vol. 40,
no. 6, pp. 1587–1622, 2011.

[17] M. Bortolini, M. Gamberi, F. Pilati, and A. Regattieri, “Design and
management of renewable smart energy systems: An optimiza-
tion model and italian case study,” in International Conference on
Engineering Optimization. Springer, 2018, pp. 1340–1352.

[18] D. Lehmann, L. I. Oćallaghan, and Y. Shoham, “Truth revelation
in approximately efficient combinatorial auctions,” Journal of the
ACM (JACM), vol. 49, no. 5, pp. 577–602, 2002.

[19] L. A. Barroso and U. Hölzle, “The datacenter as a computer: An
introduction to the design of warehouse-scale machines,” Synthesis
lectures on computer architecture, vol. 4, no. 1, pp. 1–108, 2009.

[20] E. L. Lawler, “Fast approximation algorithms for knapsack prob-
lems,” Mathematics of Operations Research, vol. 4, no. 4, pp. 339–356,
1979.

[21] I. M. Tauhidul, “Approximation algorithms for minimum knap-
sack problem,” Master’s degree Thesis, university of lethbridge, 2009.

[22] A. Mu’Alem and N. Nisan, “Truthful approximation mechanisms
for restricted combinatorial auctions,” Games and Economic Behav-
ior, vol. 64, no. 2, pp. 612–631, 2008.

[23] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorith-
mic game theory. Cambridge University Press Cambridge, 2007,
vol. 1.

[24] S. Ren and M. Islam, “Colocation demand response: Why do i
turn off my servers?” in Proc. of 11th International Conference on
Autonomic Computing (ICAC 2014). USENIX Association, 2014.

[25] url, “www.pjm.com.” [Online]. Available: https://dataminer2.
pjm.com/feed/reg zone prelim bill/definition

[26] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska, “Dynamic
right-sizing for power-proportional data centers,” IEEE/ACM
Transactions on Networking, vol. 21, no. 5, pp. 1378–1391, 2013.

[27] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Ander-
sen, G. R. Ganger, and Gibson, Safe and effective fine-grained TCP
retransmissions for datacenter communication. ACM, 2009.

[28] url, “www.datacenterknowledge.com.” [Online]. Avail-
able: https://www.datacenterknowledge.com/archives/2017/
03/16/google-data-center-faq

[29] R. Urgaonkar, B. Urgaonkar, M. J. Neely, and A. Sivasubramaniam,
“Optimal power cost management using stored energy in data
centers,” in Proceedings of the ACM SIGMETRICS joint international
conference on Measurement and modeling of computer systems, 2011,
pp. 221–232.

[30] N. Chen, X. Ren, S. Ren, and A. Wierman, “Greening multi-tenant
data center demand response,” Performance Evaluation, vol. 91, pp.
229–254, 2015.

[31] L. Zhang, S. Ren, C. Wu, and Z. Li, “A truthful incentive mecha-
nism for emergency demand response in geo-distributed coloca-
tion data centers,” ACM Transactions on Modeling and Performance
Evaluation of Computing Systems (TOMPECS), vol. 1, no. 4, pp. 1–23,
2016.

[32] Q. Sun, C. Wu, S. Ren, and Z. Li, “Fair rewarding in colocation data
centers: Truthful mechanism for emergency demand response,”
in Proceedings of IEEE 23rd International Symposium on Quality of
Service (IWQoS), 2015, pp. 363–372.

[33] K. Ahmed, M. A. Islam, and S. Ren, “A contract design approach
for colocation data center demand response,” in Proceedings of
the IEEE/ACM International Conference on Computer-Aided Design.
IEEE Press, 2015, pp. 635–640.

[34] M. Islam, H. Mahmud, S. Ren, X. Wang et al., “Paying to save:
Reducing cost of colocation data center via rewards,” in Proc.
of 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA 2015). IEEE, 2015, pp. 235–245.

[35] N. H. Tran, C. T. Do, S. Ren, Z. Han, and C. S. Hong, “Incentive
mechanisms for economic and emergency demand responses of
colocation datacenters,” Selected Areas in Communications, IEEE
Journal on, vol. 33, no. 12, pp. 2892–2905, 2015.

[36] N. H. Tran, C. Pham, S. Ren, Z. Han, and C. S. Hong, “Coor-
dinated power reduction in multi-tenant colocation datacenter:
An emergency demand response study,” in Communications (ICC),
2016 IEEE International Conference on. IEEE, 2016, pp. 1–6.

[37] N. H. Tran, C. Pham, M. N. Nguyen, S. Ren, and C. S. Hong,
“Incentivizing energy reduction for emergency demand response
in multi-tenant mixed-use buildings,” IEEE Transactions on Smart
Grid, vol. 9, no. 4, pp. 3701–3715, 2018.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. ##, NO. ##, ## 2019 17

[38] S. Dughmi and T. Roughgarden, “Black-box randomized reduc-
tions in algorithmic mechanism design,” SIAM Journal on Comput-
ing, vol. 43, no. 1, pp. 312–336, 2014.

[39] R. Zhou, Z. Li, and C. Wu, “A truthful online mechanism for
location-aware tasks in mobile crowd sensing,” IEEE Transactions
on Mobile Computing, vol. 17, no. 8, pp. 1737–1749, 2018.

[40] G. Gao, M. Xiao, J. Wu, L. Huang, and C. Hu, “Truthful incentive
mechanism for nondeterministic crowdsensing with vehicles,”
IEEE Transactions on Mobile Computing, vol. 17, no. 12, pp. 2982–
2997, 2018.

[41] J. Lessan and S. Karabatı, “A preference-based, multi-unit auction
for pricing and capacity allocation,” Computers & Operations Re-
search, vol. 91, pp. 237–246, 2018.

[42] E. Anderson and P. Holmberg, “Price instability in multi-unit
auctions,” Journal of Economic Theory, vol. 175, pp. 318–341, 2018.

[43] Y. Zhang, Y. Gu, M. Pan, N. H. Tran, Z. Dawy, and Z. Han, “Multi-
dimensional incentive mechanism in mobile crowdsourcing with
moral hazard,” IEEE Transactions on Mobile Computing, vol. 17,
no. 3, pp. 604–616, 2018.

Jianhai Chen Jianhai Chen is currently an As-
sociate Professor of College of Computer Sci-
ence and Technology at Zhejiang University
(ZJU). He is the director of ZJU SuperComputing
Team, and the director of ZJU Intelligent Com-
puting Innovation and Entrepreneurship labora-
tory (ICE-lab). He received his M.S. and PhD
degrees in Computer Science and Technology
at Zhejiang University. His research interests in-
clude blockchain system security, cloud comput-
ing scheduling algorithms and game theory, su-

percomputing application optimization, and data mining. He is a member
of CCF, IEEE and ACM.

Deshi Ye is currently an Associate Professor of
Computer Science and Technology at Zhejiang
University (ZJU). He received his Ph.D. from
Zhejiang University in Mar. 2005. His research
interests include online algorithms and approx-
imation algorithms, scheduling and bin packing
problems, wireless networks and mobile com-
puting, and algorithmic Game theory. He is a
member of CCF, IEEE.

Zhenguang Liu had been worked as a research
fellow in National University of Singapore (NUS)
and Singapopre Agency for Science, Technology
and Research (A* STAR) for three years. He
is now with Zhejiang Gongshang University. He
respectively received his Ph.D. and B.E. degrees
from Zhejiang University and Shandong Univer-
sity, China, in 2010 and 2015. His research in-
terests include data mining, distributed system,
and multimedia data analysis. Various parts of
his work have been published in first-tier venues

including AAAI, ACM MM, NIPS, TIP, TMM, TOMM, etc. He has served
as the program committee member for conferences such as ACM MM
and MMM, and the reviewer for IEEE Transactions on visualization and
computer graphics (TVCG), Journal of Parallel and Distributed Com-
puting (JPDC), ACM MM, IEEE Transactions on Multimedia, Multimedia
Tools and Applications, etc.

Shouling Ji is a ZJU 100-Young Professor in the
College of Computer Science and Technology
at Zhejiang University and a Research Faculty
in the School of Electrical and Computer Engi-
neering at Georgia Institute of Technology. He
received a Ph.D. in Electrical and Computer En-
gineering from Georgia Institute of Technology, a
Ph.D. in Computer Science from Georgia State
University. His current research interests include
AI Security, Data-driven Security, Privacy and
Data Analytics. He is a member of IEEE and

ACM and was the Membership Chair of the IEEE Student Branch at
Georgia State (2012-2013).

Qinming He is currently a Professor in College
of Computer Science & Technology at Zhejiang
University. He received his BS, MS and Ph.D.
degrees in Computer Science from Zhejiang
University, P. R. China in 1985, 1988 and 2000
respectively. His research interests include data
mining and blockchain system security.

Yang Xiang Professor Yang Xiang received his
PhD in Computer Science from Deakin Univer-
sity, Australia. He is currently a full professor and
the Dean of Digital Research & Innovation Ca-
pability Platform, Swinburne University of Tech-
nology, Australia. His research interests include
cyber security, which covers network and system
security, data analytics, distributed systems, and
networking. He is also leading the Blockchain
initiatives at Swinburne. In the past 20 years,
he has been working in the broad area of cyber

security, which covers network and system security, AI, data analytics,
and networking. He has published more than 300 research papers in
many international journals and conferences. He is the Editor-in-Chief
of the SpringerBriefs on Cyber Security Systems and Networks. He
serves as the Associate Editor of IEEE Transactions on Dependable
and Secure Computing and IEEE Internet of Things Journal, and the
Editor of Journal of Network and Computer Applications. He served
as the Associate Editor of IEEE Transactions on Computers and IEEE
Transactions on Parallel and Distributed Systems. He is the Coordinator,
Asia for IEEE Computer Society Technical Committee on Distributed
Processing (TCDP). He is a Fellow of the IEEE.

